Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (1) : 209-218    https://doi.org/10.1007/s11464-016-0598-8
RESEARCH ARTICLE
Modular derivations for extensions of Poisson algebras
Shengqiang WANG()
Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(147 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We compute explicitly the modular derivations for Poisson-Ore extensions and tensor products of Poisson algebras.

Keywords Poisson algebra      Frobenius Poisson algebra      modular derivation      tensor Poisson algebra     
Corresponding Author(s): Shengqiang WANG   
Issue Date: 17 November 2016
 Cite this article:   
Shengqiang WANG. Modular derivations for extensions of Poisson algebras[J]. Front. Math. China, 2017, 12(1): 209-218.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0598-8
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I1/209
1 Ciccoli N. Poisson Ore extensions. In: Coen S, ed. Seminari di Geometria dell’Universit′a di Bologna 2005–2009. 2011
2 Dolgushev V. The Van den Bergh duality and the modular symmetry of a Poisson variety. Selecta Math, 2009, 14: 199–228
https://doi.org/10.1007/s00029-008-0062-z
3 Huebschmann J. Duality for Lie-Rinehart algebras and the modular class. J Reine Angew Math, 1999, 510: 103–159
https://doi.org/10.1515/crll.1999.043
4 Kontsevich M. Deformation quantization of Poisson manifolds. Lett Math Phys, 2003, 66: 157–216
https://doi.org/10.1023/B:MATH.0000027508.00421.bf
5 Laurent-Gengoux C, Pichereau A, Vanhaecke P. Poisson Structures. Grundlehren Math Wiss, Vol 347. Berlin: Springer, 2013
https://doi.org/10.1007/978-3-642-31090-4
6 Lichnerowicz A. Les varieties de Poisson et leurs algebres de Lie associees. J Differential Geom, 1977, 12: 253–300 (in French)
7 Luo J, Wang S-Q, Wu Q-S. Twisted Poincar′e duality between Poisson homology and Poisson cohomology. J Algebra, 2015, 442: 484–505
https://doi.org/10.1016/j.jalgebra.2014.08.023
8 Oh S Q. Poisson polynomial rings. Comm Algebra, 2006, 34: 1265–1277
https://doi.org/10.1080/00927870500454463
9 Weibel C. An Introduction to Homological Algebra. Cambridge: Cambridge Univ Press, 1994
https://doi.org/10.1017/CBO9781139644136
10 Weinstein A. Lecture on Symplectic Manifolds. CBMS Reg Conf Ser Math, No 29. Providence: Amer Math Soc, 1977
https://doi.org/10.1090/cbms/029
11 Zhu C, Van Oystaeyen F, Zhang Y-H. On (co)homology of Frobenius Poisson algebras. J K-Theory, 2014, 14: 371–386
https://doi.org/10.1017/is014007026jkt276
[1] Juan LUO, Shengqiang WANG, Quanshui WU. Frobenius Poisson algebras[J]. Front. Math. China, 2019, 14(2): 395-420.
[2] Yanhong BAO, Xianneng DU, Yu YE. Poisson structures on basic cycles[J]. Front Math Chin, 2012, 7(3): 385-396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed