|
|
Modular derivations for extensions of Poisson algebras |
Shengqiang WANG( ) |
Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China |
|
1 |
Ciccoli N. Poisson Ore extensions. In: Coen S, ed. Seminari di Geometria dell’Universit′a di Bologna 2005–2009. 2011
|
2 |
Dolgushev V. The Van den Bergh duality and the modular symmetry of a Poisson variety. Selecta Math, 2009, 14: 199–228
https://doi.org/10.1007/s00029-008-0062-z
|
3 |
Huebschmann J. Duality for Lie-Rinehart algebras and the modular class. J Reine Angew Math, 1999, 510: 103–159
https://doi.org/10.1515/crll.1999.043
|
4 |
Kontsevich M. Deformation quantization of Poisson manifolds. Lett Math Phys, 2003, 66: 157–216
https://doi.org/10.1023/B:MATH.0000027508.00421.bf
|
5 |
Laurent-Gengoux C, Pichereau A, Vanhaecke P. Poisson Structures. Grundlehren Math Wiss, Vol 347. Berlin: Springer, 2013
https://doi.org/10.1007/978-3-642-31090-4
|
6 |
Lichnerowicz A. Les varieties de Poisson et leurs algebres de Lie associees. J Differential Geom, 1977, 12: 253–300 (in French)
|
7 |
Luo J, Wang S-Q, Wu Q-S. Twisted Poincar′e duality between Poisson homology and Poisson cohomology. J Algebra, 2015, 442: 484–505
https://doi.org/10.1016/j.jalgebra.2014.08.023
|
8 |
Oh S Q. Poisson polynomial rings. Comm Algebra, 2006, 34: 1265–1277
https://doi.org/10.1080/00927870500454463
|
9 |
Weibel C. An Introduction to Homological Algebra. Cambridge: Cambridge Univ Press, 1994
https://doi.org/10.1017/CBO9781139644136
|
10 |
Weinstein A. Lecture on Symplectic Manifolds. CBMS Reg Conf Ser Math, No 29. Providence: Amer Math Soc, 1977
https://doi.org/10.1090/cbms/029
|
11 |
Zhu C, Van Oystaeyen F, Zhang Y-H. On (co)homology of Frobenius Poisson algebras. J K-Theory, 2014, 14: 371–386
https://doi.org/10.1017/is014007026jkt276
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|