Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (2) : 395-420    https://doi.org/10.1007/s11464-019-0756-x
RESEARCH ARTICLE
Frobenius Poisson algebras
Juan LUO1(), Shengqiang WANG2, Quanshui WU3
1. Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China
2. Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China
3. School of Mathematical Sciences, Fudan University, Shanghai 200433, China
 Download: PDF(361 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper is devoted to study Frobenius Poisson algebras. We introduce pseudo-unimodular Poisson algebras by generalizing unimodular Poisson algebras, and investigate Batalin-Vilkovisky structures on their cohomology algebras. For any Frobenius Poisson algebra, all Batalin-Vilkovisky operators on its Poisson cochain complex are described explicitly. It is proved that there exists a Batalin-Vilkovisky operator on its cohomology algebra which is induced from a Batalin-Vilkovisky operator on the Poisson cochain complex, if and only if the Poisson structure is pseudo-unimodular. The relation between modular derivations of polynomial Poisson algebras and those of their truncated Poisson algebras is also described in some cases.

Keywords Poisson algebra      Frobenius algebra      Batalin-Vilkovisky algebra      Poisson (co)homology      modular derivation     
Corresponding Author(s): Juan LUO   
Issue Date: 14 May 2019
 Cite this article:   
Juan LUO,Shengqiang WANG,Quanshui WU. Frobenius Poisson algebras[J]. Front. Math. China, 2019, 14(2): 395-420.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0756-x
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I2/395
1 I ABatalin, G SVilkovisky. Quantization of gauge theories with linearly dependent generators. Phys Rev D, 1983, 28: 2567–2582
https://doi.org/10.1103/PhysRevD.28.2567
2 I ABatalin, G SVilkovisky. Closure of the gauge algebra, generalized Lie equations and Feynman rules. Nuclear Phys B, 1984, 234: 106–124
https://doi.org/10.1016/0550-3213(84)90227-X
3 I ABatalin, G SVilkovisky. Existence theorem for gauge algebra. J Math Phys, 1985, 26: 172–184
https://doi.org/10.1063/1.526780
4 RBerger, APichereau. Calabi-Yau algebras viewed as deformations of Poisson algebras. Algebr Represent Theory, 2014, 17: 735–773
https://doi.org/10.1007/s10468-013-9417-z
5 J LBrylinski. A differential complex for Poisson manifolds. J Differential Geom, 1988, 28: 93–114
https://doi.org/10.4310/jdg/1214442161
6 XChen, YChen, FEshmatov, S.YangPoisson cohomology, Koszul duality, and Batalin-Vilkovisky algebras. ArXiv: 1701.06112v2
7 XChen, SYang, G.ZhouBatalin-Vilkovisky algebras and the noncommutative Poincaré duality of Koszul Calabi-Yau algebras. J Pure Appl Algebra, 2016, 220: 2500–2532
https://doi.org/10.1016/j.jpaa.2015.11.016
8 V ADolgushev. The Van den Bergh duality and the modular symmetry of a Poisson variety. Selecta Math (N S), 2009, 14: 199–228
https://doi.org/10.1007/s00029-008-0062-z
9 MGerstenhaber. The cohomology structure of an associative ring. Ann of Math (2), 1963, 78: 267–288
https://doi.org/10.2307/1970343
10 V.GinzburgLectures on Noncommutative Geometry. ArXiv: math.AG/0506603
11 JHuebschmann. Poisson cohomology and quantization. J Reine Angew Math, 1990, 408: 57–113
https://doi.org/10.1515/crll.1990.408.57
12 JHuebschmann. Duality for Lie-Rinehart algebras and the modular class. J Reine Angew Math, 1999, 510: 103–159
https://doi.org/10.1515/crll.1999.043
13 MKontsevich. Formality conjecture. In: Deformation Theory and Symplectic Geometry, Ascona, 1996. Math Phys Stud, Vol 20. Dordrecht: Kluwer Academic Publishers, 1997, 139–156
14 MKontsevich. Deformation quantization of Poisson manifolds. Lett Math Phys, 2003, 66: 157–216
https://doi.org/10.1023/B:MATH.0000027508.00421.bf
15 NKowalzig, UKrähmer. Batalin-Vilkovisky structures on Ext and Tor. J Reine Angew Math, 2014, 697: 159–219
https://doi.org/10.1515/crelle-2012-0086
16 TLambre, GZhou, AZimmermann. The Hochschild cohomology ring of a Frobenius algebra with semisimple Nakayama automorphism is a Batalin-Vilkovisky algebra. J Algebra, 2016, 446: 103–131
https://doi.org/10.1016/j.jalgebra.2015.09.018
17 SLaunois, LRichard. Twisted Poincaré duality for some quadratic Poisson algebras. Lett Math Phys, 2007, 79: 161–174
https://doi.org/10.1007/s11005-006-0133-z
18 SLaunois, LRichard. Poisson (co)homology of truncated polynomial algebras in two variables. Comptes Rendus Mathématique, 2009, 347: 133–138
https://doi.org/10.1016/j.crma.2008.12.005
19 CLaurent-Gengoux, APichereau, P.VanhaeckePoisson Structures. Grundlehren Math Wiss, Vol 347. Berlin: Springer, 2013
https://doi.org/10.1007/978-3-642-31090-4
20 ALichnerowicz. Les varieties de Poisson et leurs algebres de Lie associees. J Differential Geom, 1977, 12: 253–300
https://doi.org/10.4310/jdg/1214433987
21 JLuo, S QWang, Q SWu. Twisted Poincar? duality between Poisson homology and Poisson cohomology. J Algebra, 2015, 442: 484–505
https://doi.org/10.1016/j.jalgebra.2014.08.023
22 JLuo, S QWang, Q SWu. Batalin-Vilkovisky structures and Poincaré dualities for smooth Poisson algebras. Preprint
23 NMarconnet. Homologies of cubic Artin-Schelter regular algebras. J Algebra, 2004, 278: 638–665
https://doi.org/10.1016/j.jalgebra.2003.11.019
24 TMaszczyk. Maximal commutative subalgebras. Poisson geometry and Hochschild homology. ArXiv: math/0603386v1
25 S QOh. Poisson enveloping algebras. Comm Algebra, 1999, 27: 2181–2186
https://doi.org/10.1080/00927879908826556
26 BShoikhet. Koszul duality in deformation quantization and Tamarkin's approach to Kontsevich formality. Adv Math, 2010, 224: 731–771
https://doi.org/10.1016/j.aim.2009.12.010
27 S R.Tagne PelapOn the Hochschild homology of elliptic Sklyanin algebras. Lett Math Phys, 2009, 87: 267–281
https://doi.org/10.1007/s11005-009-0307-6
28 S RTagne Pelap. Poisson (co)homology of polynomial Poisson algebras in dimension four: Sklyanin's case. J Algebra, 2009, 322: 1151–1169
https://doi.org/10.1016/j.jalgebra.2009.05.024
29 TTradler. The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products. Ann Inst Fourier (Grenoble), 2008, 58: 2351–2379
https://doi.org/10.5802/aif.2417
30 MVan den Bergh. Noncommutative homology of some three-dimensional quantum spaces. K-Theory, 1994, 8: 213–230
https://doi.org/10.1007/BF00960862
31 S QWang, Q SWu, G DZhou, CZhu. Batalin-Vilkovisky structure over Frobenius Poisson cohomology. Preprint
32 AWeinstein. Lecture on Symplectic Manifolds. CBMS Reg Conf Ser Math, No 29. Providence: Amer Math Soc, 1977
https://doi.org/10.1090/cbms/029
33 AWeinstein. The local structure of Poisson manifolds. J Differential Geom, 1983, 18: 523–557
https://doi.org/10.4310/jdg/1214437787
34 PXu. Gerstenhaber algebras and BV-algebras in Poisson geometry. Comm Math Phys, 1999, 200: 545–560
https://doi.org/10.1007/s002200050540
35 CZhu. Twisted Poincaré duality for Poisson homology and cohomology of affine Poisson algebras, Proc Amer Math Soc, 2015, 143: 1957–1967
https://doi.org/10.1090/S0002-9939-2014-12411-7
36 CZhu, FVan Oystaeyen, Y HZhang. On (co)homology of Frobenius Poisson algebras. J K-Theory, 2014, 14: 371–386
https://doi.org/10.1017/is014007026jkt276
[1] Zhihua WANG, Libin LI. Double Frobenius algebras[J]. Front. Math. China, 2018, 13(2): 399-415.
[2] Shengqiang WANG. Modular derivations for extensions of Poisson algebras[J]. Front. Math. China, 2017, 12(1): 209-218.
[3] Gangyong LEE,Kiyoichi OSHIRO. Quaternion rings and octonion rings[J]. Front. Math. China, 2017, 12(1): 143-155.
[4] Yanhong BAO, Xianneng DU, Yu YE. Poisson structures on basic cycles[J]. Front Math Chin, 2012, 7(3): 385-396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed