Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (1) : 117-134    https://doi.org/10.1007/s11464-016-0586-z
RESEARCH ARTICLE
Structure of Abelian rings
Juncheol HAN1,Yang LEE1(),Sangwon PARK2
1. Department of Mathematics Education, Pusan National University, Pusan 46241, Korea
2. Department of Mathematics, Dong-A University, Pusan 49315, Korea
 Download: PDF(195 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let R be a ring with identity. We use J(R), G(R), and X(R) to denote the Jacobson radical, the group of all units, and the set of all nonzero nonunits in R, respectively. A ring is said to be Abelian if every idempotent is central. It is shown, for an Abelian ring R and an idempotent-lifting ideal NJ(R) of R, that R has a complete set of primitive idempotents if and only if R/N has a complete set of primitive idempotents. The structure of an Abelian ring R is completely determined in relation with the local property when X(R) is a union of 2, 3, 4, and 5 orbits under the left regular action on X(R) by G(R). For a semiperfect ring R which is not local, it is shown that if G(R) is a cyclic group with 2 ∈ G(R), then R is finite. We lastly consider two sorts of conditions for G(R) to be an Abelian group.

Keywords Abelian ring      regular group action      local ring      semiperfect ring      finite ring      Abelian group      idempotent-lifting      complete set of primitive idempotents     
Corresponding Author(s): Yang LEE   
Issue Date: 17 November 2016
 Cite this article:   
Juncheol HAN,Yang LEE,Sangwon PARK. Structure of Abelian rings[J]. Front. Math. China, 2017, 12(1): 117-134.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0586-z
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I1/117
1 Amitsur S A. A general theory of radicals III. Amer J Math, 1954, 76: 126–136
https://doi.org/10.2307/2372404
2 Antoine R. Nilpotent elements and Armendariz rings. J Algebra, 2008, 319: 3128–3140
https://doi.org/10.1016/j.jalgebra.2008.01.019
3 Cohen J, Koh K. Half-transitive group actions in a compact ring. J Pure Appl Algebra, 1989, 60: 139–153
https://doi.org/10.1016/0022-4049(89)90126-6
4 Goodearl K R. Von Neumann Regular Rings.London: Pitman, 1979
5 Goodearl K R, Warfield R B Jr. An Introduction to Noncommutative Noetherian Rings. Cambridge-New York-Port Chester-Melbourne-Sydney: Cambridge Univ Press, 1989
6 Grover K R, Khurana D, Singh S. Rings with multiplicative set of primitive idempotents. Comm Algebra, 2009, 37: 2583–2590
https://doi.org/10.1080/00927870902747217
7 Han J, Lee Y, Park S. Semicentral idempotents in a ring. J Korean Math Soc, 2014, 51: 463–472
https://doi.org/10.4134/JKMS.2014.51.3.463
8 Han J, Park S. Additive set of idempotents in rings. Comm Algebra, 2012, 40: 3551–3557
https://doi.org/10.1080/00927872.2011.591862
9 Han J, Park S. Rings with a finite number of orbits under the regular action. J Korean Math Soc, 2014, 51: 655–663
https://doi.org/10.4134/JKMS.2014.51.4.655
10 Hirano Y, Huynh D V, Park J K. On rings whose prime radical contains all nilpotent elements of index two. Arch Math, 1996, 66: 360–365
https://doi.org/10.1007/BF01781553
11 Huh C, Kim H K, Lee Y. p.p. rings and generalized p.p. rings. J Pure Appl Algebra, 2002, 167: 37–52
https://doi.org/10.1016/S0022-4049(01)00149-9
12 Huh C, Lee Y, Smoktunowicz A. Armendariz rings and semicommutative rings. Comm Algebra, 2002, 30: 751–761
https://doi.org/10.1081/AGB-120013179
13 Hwang S U, Jeon Y C, Lee Y. Structure and topological conditions of NI rings. J Algebra, 2006, 302: 186–199
https://doi.org/10.1016/j.jalgebra.2006.02.032
14 Jeon Y C, Kim H K, Lee Y, Yoon J S. On weak Armendariz rings. Bull Korean Math Soc, 2009, 46: 135–146
https://doi.org/10.4134/BKMS.2009.46.1.135
15 Jung D W, Kim N K, Lee Y, Yang S P. Nil-Armendariz rings and upper nilradicals. Internat J Algebra Comput, 2012, 22: 1–13 (1250059)
16 Kim N K, Lee Y. Armendariz rings and related rings. J Algebra, 2000, 223: 477–488
https://doi.org/10.1006/jabr.1999.8017
17 Lam T Y. A First Course in Noncommutative Rings.New York: Springer-Verlag, 1991
https://doi.org/10.1007/978-1-4684-0406-7
18 Lambek J. Lectures on Rings and Modules.London: Blaisdell Publ Co, 1966
19 Nicholson W K. Introduction to Abstract Algebra.Boston: PWS, 1998
[1] Tianyi ZHONG, Yilan TAN. On B6- and B7-groups[J]. Front. Math. China, 2020, 15(3): 613-616.
[2] Weiyang WANG, Keqin FENG. Inhomogeneous quantum codes (II): non-additive case[J]. Front Math Chin, 2012, 7(3): 573-586.
[3] Jizhu NAN, Yin CHEN. Ring of invariants of general linear group over local ring ?pm[J]. Front Math Chin, 2011, 6(5): 887-899.
[4] Haipeng QU, . Elementary proof of a theorem of Blackburn[J]. Front. Math. China, 2010, 5(1): 117-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed