|
|
|
New characterizations for core inverses in rings with involution |
Sanzhang XU,Jianlong CHEN( ),Xiaoxiang ZHANG |
| Department of Mathematics, Southeast University, Nanjing 210096, China |
|
|
|
|
Abstract The core inverse for a complex matrix was introduced by O. M. Baksalary and G. Trenkler. D. S. Rakíc, N.Č. Diňcíc and D. S. Djordjevíc generalized the core inverse of a complex matrix to the case of an element in a ring. They also proved that the core inverse of an element in a ring can be characterized by five equations and every core invertible element is group invertible. It is natural to ask when a group invertible element is core invertible. In this paper, we will answer this question. Let R be a ring with involution, we will use three equations to characterize the core inverse of an element. That is, let a, b ∈ R. Then a ∈ R# with a# = b if and only if (ab)∗ = ab, ba2= a, and ab2= b. Finally, we investigate the additive property of two core invertible elements. Moreover, the formulae of the sum of two core invertible elements are presented.
|
| Keywords
Core inverse
dual core inverse
group inverse
{1,3}-inverse
{1,4}-inverse
|
|
Corresponding Author(s):
Jianlong CHEN
|
|
Issue Date: 17 November 2016
|
|
| 1 |
Baksalary O M, Trenkler G. Core inverse of matrices. Linear Multilinear Algebra, 2010, 58(6): 681–697
https://doi.org/10.1080/03081080902778222
|
| 2 |
Ben-Israel A, Greville T N. Generalized Inverses: Theory and Applications. Chichester: Wiley, 1977
|
| 3 |
Benítez J, Liu X J, Zhu T P. Additive results for the group inverse in an algebra with applications to block operators. Linear Multilinear Algebra, 2011, 59(3): 279–289
https://doi.org/10.1080/03081080903410262
|
| 4 |
Castróa-Gonzlez N. Additive perturbation results for the Drazin inverse. Linear Algebra Appl, 2005, 397: 279–297
https://doi.org/10.1016/j.laa.2004.11.001
|
| 5 |
Chen J L, Zhuang G F, Wei Y M. The Drazin inverse of a sum of morphisms. Acta Math Sci Ser A Chin Ed, 2009, 29(3): 538–552
|
| 6 |
Cvetković-Ilić D S, D.S. Djordjević, Wei Y M. Additive results for the generalized Drazin inverse in a Banach algebra. Linear Algebra Appl, 2006, 418: 53–61
https://doi.org/10.1016/j.laa.2006.01.015
|
| 7 |
Deng C Y, Wei Y M. New additive results for the generalized Drazin inverse. J Math Anal Appl, 2010, 370: 313–321
https://doi.org/10.1016/j.jmaa.2010.05.010
|
| 8 |
Drazin M P. Pseudo-inverses in associative rings and semigroup. Amer Math Monthly, 1958, 65: 506–514
https://doi.org/10.2307/2308576
|
| 9 |
Han R Z, Chen J L. Generalized inverses of matrices over rings. Chinese Quart J Math, 1992, 7(4): 40–49
|
| 10 |
Hartwig R E. Block generalized inverses. Arch Retion Mech Anal, 1976, 61(3): 197–251
https://doi.org/10.1007/BF00281485
|
| 11 |
Hartwig R E, Wang G R, Wei Y M. Some additive results on Drazin inverse. Linear Algebra Appl, 2001, 322(1-3): 207–217
https://doi.org/10.1016/S0024-3795(00)00257-3
|
| 12 |
Patrićio P, Hartwig R E. Some additive results on Drazin inverse. Appl Math Comput, 2009, 215: 530–538
https://doi.org/10.1016/j.amc.2009.05.021
|
| 13 |
Penrose R. A generalized inverse for matrices. Proc Cambridge Philos Soc, 1955, 51: 406–413
https://doi.org/10.1017/S0305004100030401
|
| 14 |
Puystjens P, Hartwig R E. The group inverse of a companion matrix. Linear Multilinear Algebra, 1997, 43: 137–150
https://doi.org/10.1080/03081089708818521
|
| 15 |
Rakíc D S, Diňcíc N ˇC,Djordjevíc D S. Core inverse and core partial order of Hilbert space operators. Appl Math Comput, 2014, 244: 283–302
https://doi.org/10.1016/j.amc.2014.06.112
|
| 16 |
Rakíc D S, Diňcíc N ˇ C,Djordjevíc D S. Group, Moore-Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl, 2014, 463: 115–133
https://doi.org/10.1016/j.laa.2014.09.003
|
| 17 |
Wang H X, Liu X J. Characterizations of the core inverse and the partial ordering. Linear Multilinear Algebra, 2015, 63(9): 1829–1836
https://doi.org/10.1080/03081087.2014.975702
|
| 18 |
Zhuang G F, Chen J L, Cvetković-Ilić D S, Wei Y M. Additive property of Drazin invertibility of elemnets in a ring. Linear Multilinear Algebra, 2012, 60: 903–910
https://doi.org/10.1080/03081087.2011.629998
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|