|
|
Twisted partial coactions of Hopf algebras |
Quanguo CHEN,Dingguo WANG( ),Xiaodan KANG |
School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China |
|
|
Abstract In this paper, the notion of a twisted partial Hopf coaction is introduced. The conditions on partial cocycles are established in order to construct partial crossed coproducts. Then the classification of partial crossed coproducts is discussed. Finally, some necessary and sufficient conditions for a class of partial crossed coproducts to be quasitriangular bialgebras are given.
|
Keywords
Hopf algebra
partial crossed coproduct
quasitriangular structure
|
Corresponding Author(s):
Dingguo WANG
|
Issue Date: 17 November 2016
|
|
1 |
Agore A L. Coquasitriangular structures for extensions of Hopf algebras. Applications. Glasg Math J, 2013, 55: 201–215
https://doi.org/10.1017/S0017089512000444
|
2 |
Alves M M S, Batista E. Partial Hopf actions, partial invariants and a Morita context. Algebra Discrete Math, 2009, 3: 1–19
|
3 |
Alves M M S, Batista E. Enveloping actions for partial Hopf actions. Comm Algebra, 2010, 38: 2872–2902
https://doi.org/10.1080/00927870903095582
|
4 |
Alves M M S, Batista E. Globalization theorems for partial Hopf (co)actions and some of their applications. Contemp Math, 2011, 537: 13–30
https://doi.org/10.1090/conm/537/10564
|
5 |
Alves M M S, Batista E, Dokuchaev M, Paques A. Twisted partial actions of Hopf algebras. Israel J Math, 2013, 197: 263–308
https://doi.org/10.1007/s11856-013-0032-9
|
6 |
Bagio D, Lazzarin J, Paques A. Crossed products by twisted partial actions: separability, semisimplicity and Frobenius properties. Comm Algebra, 2010, 38: 496–508
https://doi.org/10.1080/00927870802614764
|
7 |
Beggs E, Majid S. Quasitriangular and differential structures on bicrossproduct Hopf algebras. J Algebra, 1999, 219: 682–727
https://doi.org/10.1006/jabr.1998.7845
|
8 |
Blattner R J, Cohen M, Montgomery S. Crossed products and inner actions of Hopf algebras. Trans Amer Math Soc, 1986, 298: 671–711
https://doi.org/10.1090/S0002-9947-1986-0860387-X
|
9 |
Caenepeel S, Janssen K. Partial (co)actions of Hopf algebras and partial Hopf-Galois theory. Comm Algebra, 2008, 36: 2923–2946
https://doi.org/10.1080/00927870802110334
|
10 |
Chen H X. Quasitriangular structures of bicrossed coproducts. J Algebra, 1998, 204: 504–531
https://doi.org/10.1006/jabr.1997.7381
|
11 |
Chen Q G, Wang D G. Constructing quasitriangular Hopf algebras. Comm Algebra, 2015, 43(4): 1698–1722
https://doi.org/10.1080/00927872.2013.876036
|
12 |
Chen Q G, Wang D G. A class of coquasitriangular Hopf group algebras. Comm Algebra, 2016, 44(1): 310–335
https://doi.org/10.1080/00927872.2014.975556
|
13 |
Dascalescu S, Militaru G, Raianu S. Crossed coproducts and cleft coextensions. Comm Algebra, 1996, 24: 1229–1243
https://doi.org/10.1080/00927879608825635
|
14 |
Doi Y. Equivalent crossed products for a Hopf algebra. Comm Algebra, 1989, 17(12): 3053–3085
https://doi.org/10.1080/00927878908823895
|
15 |
Dokuchaev M, Exel R, Piccione P. Partial representations and partial group algebras. J Algebra, 2000, 226: 505–532
https://doi.org/10.1006/jabr.1999.8204
|
16 |
Dokuchaev M, Exel R. Associativity of crossed products by partial actions, enveloping actions and partial representations. Trans Amer Math Soc, 2005, 357: 1931–1952
https://doi.org/10.1090/S0002-9947-04-03519-6
|
17 |
Dokuchaev M, Exel R, Simón J J. Crossed products by twisted partial actions and graded algebras. J Algebra, 2008, 320: 3278–3310
https://doi.org/10.1016/j.jalgebra.2008.06.023
|
18 |
Dokuchaev M, Exel R, Simón J J. Globalization of twisted partial actions. Trans Amer Math Soc, 2010, 362(8): 4137–4160
https://doi.org/10.1090/S0002-9947-10-04957-3
|
19 |
Dokuchaev M, Ferrero M, Paques A. Partial actions and Galois theory. J Pure Appl Algebra, 2007, 208: 77–87
https://doi.org/10.1016/j.jpaa.2005.11.009
|
20 |
Dokuchaev M, Novikov B. Partial projective representations and partial actions. J Pure Appl Algebra, 2010, 214: 251–268
https://doi.org/10.1016/j.jpaa.2009.05.001
|
21 |
Dokuchaev M, Novikov B. Partial projective representations and partial actions II. J Pure Appl Algebra, 2012, 216: 438–455
https://doi.org/10.1016/j.jpaa.2011.07.007
|
22 |
Drinfeld V. Quantum Groups. Proc Int Congr Math Berkeley, Vol 1. 1987, 798–820
|
23 |
Exel R. Circle actions on C∗-algebras, partial automorphisms and generalized Pimsner-Voiculescu exact sequences. J Funct Anal, 1994, 122: 361–401
https://doi.org/10.1006/jfan.1994.1073
|
24 |
Exel R. Twisted partial actions: a classification of regular C ∗-algebraic bundles. Proc Lond Math Soc, 1997, 74: 417–443
https://doi.org/10.1112/S0024611597000154
|
25 |
Exel R. Partial actions of groups and actions of inverse semigroups. Proc Amer Math Soc, 1998, 126: 3481–3494
https://doi.org/10.1090/S0002-9939-98-04575-4
|
26 |
Jiao Z M. The quasitriangular structures for a class of T-smash product Hopf algebras. Israel J Math, 2005, 146: 125–148
https://doi.org/10.1007/BF02773530
|
27 |
Lin L P. Crossed coproducts of Hopf algebras. Comm Algebra, 1982, 10: 1–17
https://doi.org/10.1080/00927878208822699
|
28 |
McClanahan K. K-theory for partial crossed products by discrete groups. J Funct Anal, 1995, 130: 77–117
https://doi.org/10.1006/jfan.1995.1064
|
29 |
Montgomery S. Hopf Algebras and their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993
https://doi.org/10.1090/cbms/082
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|