Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (1) : 63-86    https://doi.org/10.1007/s11464-016-0597-9
RESEARCH ARTICLE
Twisted partial coactions of Hopf algebras
Quanguo CHEN,Dingguo WANG(),Xiaodan KANG
School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China
 Download: PDF(212 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the notion of a twisted partial Hopf coaction is introduced. The conditions on partial cocycles are established in order to construct partial crossed coproducts. Then the classification of partial crossed coproducts is discussed. Finally, some necessary and sufficient conditions for a class of partial crossed coproducts to be quasitriangular bialgebras are given.

Keywords Hopf algebra      partial crossed coproduct      quasitriangular structure     
Corresponding Author(s): Dingguo WANG   
Issue Date: 17 November 2016
 Cite this article:   
Quanguo CHEN,Dingguo WANG,Xiaodan KANG. Twisted partial coactions of Hopf algebras[J]. Front. Math. China, 2017, 12(1): 63-86.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0597-9
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I1/63
1 Agore A L. Coquasitriangular structures for extensions of Hopf algebras. Applications. Glasg Math J, 2013, 55: 201–215
https://doi.org/10.1017/S0017089512000444
2 Alves M M S, Batista E. Partial Hopf actions, partial invariants and a Morita context. Algebra Discrete Math, 2009, 3: 1–19
3 Alves M M S, Batista E. Enveloping actions for partial Hopf actions. Comm Algebra, 2010, 38: 2872–2902
https://doi.org/10.1080/00927870903095582
4 Alves M M S, Batista E. Globalization theorems for partial Hopf (co)actions and some of their applications. Contemp Math, 2011, 537: 13–30
https://doi.org/10.1090/conm/537/10564
5 Alves M M S, Batista E, Dokuchaev M, Paques A. Twisted partial actions of Hopf algebras. Israel J Math, 2013, 197: 263–308
https://doi.org/10.1007/s11856-013-0032-9
6 Bagio D, Lazzarin J, Paques A. Crossed products by twisted partial actions: separability, semisimplicity and Frobenius properties. Comm Algebra, 2010, 38: 496–508
https://doi.org/10.1080/00927870802614764
7 Beggs E, Majid S. Quasitriangular and differential structures on bicrossproduct Hopf algebras. J Algebra, 1999, 219: 682–727
https://doi.org/10.1006/jabr.1998.7845
8 Blattner R J, Cohen M, Montgomery S. Crossed products and inner actions of Hopf algebras. Trans Amer Math Soc, 1986, 298: 671–711
https://doi.org/10.1090/S0002-9947-1986-0860387-X
9 Caenepeel S, Janssen K. Partial (co)actions of Hopf algebras and partial Hopf-Galois theory. Comm Algebra, 2008, 36: 2923–2946
https://doi.org/10.1080/00927870802110334
10 Chen H X. Quasitriangular structures of bicrossed coproducts. J Algebra, 1998, 204: 504–531
https://doi.org/10.1006/jabr.1997.7381
11 Chen Q G, Wang D G. Constructing quasitriangular Hopf algebras. Comm Algebra, 2015, 43(4): 1698–1722
https://doi.org/10.1080/00927872.2013.876036
12 Chen Q G, Wang D G. A class of coquasitriangular Hopf group algebras. Comm Algebra, 2016, 44(1): 310–335
https://doi.org/10.1080/00927872.2014.975556
13 Dascalescu S, Militaru G, Raianu S. Crossed coproducts and cleft coextensions. Comm Algebra, 1996, 24: 1229–1243
https://doi.org/10.1080/00927879608825635
14 Doi Y. Equivalent crossed products for a Hopf algebra. Comm Algebra, 1989, 17(12): 3053–3085
https://doi.org/10.1080/00927878908823895
15 Dokuchaev M, Exel R, Piccione P. Partial representations and partial group algebras. J Algebra, 2000, 226: 505–532
https://doi.org/10.1006/jabr.1999.8204
16 Dokuchaev M, Exel R. Associativity of crossed products by partial actions, enveloping actions and partial representations. Trans Amer Math Soc, 2005, 357: 1931–1952
https://doi.org/10.1090/S0002-9947-04-03519-6
17 Dokuchaev M, Exel R, Simón J J. Crossed products by twisted partial actions and graded algebras. J Algebra, 2008, 320: 3278–3310
https://doi.org/10.1016/j.jalgebra.2008.06.023
18 Dokuchaev M, Exel R, Simón J J. Globalization of twisted partial actions. Trans Amer Math Soc, 2010, 362(8): 4137–4160
https://doi.org/10.1090/S0002-9947-10-04957-3
19 Dokuchaev M, Ferrero M, Paques A. Partial actions and Galois theory. J Pure Appl Algebra, 2007, 208: 77–87
https://doi.org/10.1016/j.jpaa.2005.11.009
20 Dokuchaev M, Novikov B. Partial projective representations and partial actions. J Pure Appl Algebra, 2010, 214: 251–268
https://doi.org/10.1016/j.jpaa.2009.05.001
21 Dokuchaev M, Novikov B. Partial projective representations and partial actions II. J Pure Appl Algebra, 2012, 216: 438–455
https://doi.org/10.1016/j.jpaa.2011.07.007
22 Drinfeld V. Quantum Groups. Proc Int Congr Math Berkeley, Vol 1. 1987, 798–820
23 Exel R. Circle actions on C∗-algebras, partial automorphisms and generalized Pimsner-Voiculescu exact sequences. J Funct Anal, 1994, 122: 361–401
https://doi.org/10.1006/jfan.1994.1073
24 Exel R. Twisted partial actions: a classification of regular C ∗-algebraic bundles. Proc Lond Math Soc, 1997, 74: 417–443
https://doi.org/10.1112/S0024611597000154
25 Exel R. Partial actions of groups and actions of inverse semigroups. Proc Amer Math Soc, 1998, 126: 3481–3494
https://doi.org/10.1090/S0002-9939-98-04575-4
26 Jiao Z M. The quasitriangular structures for a class of T-smash product Hopf algebras. Israel J Math, 2005, 146: 125–148
https://doi.org/10.1007/BF02773530
27 Lin L P. Crossed coproducts of Hopf algebras. Comm Algebra, 1982, 10: 1–17
https://doi.org/10.1080/00927878208822699
28 McClanahan K. K-theory for partial crossed products by discrete groups. J Funct Anal, 1995, 130: 77–117
https://doi.org/10.1006/jfan.1995.1064
29 Montgomery S. Hopf Algebras and their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993
https://doi.org/10.1090/cbms/082
[1] Haijun CAO. Weak rigid monoidal category[J]. Front. Math. China, 2017, 12(1): 19-33.
[2] Bingliang SHEN,Ling LIU. Center construction and duality of category of Hom-Yetter-Drinfeld modules over monoidal Hom-Hopf algebras[J]. Front. Math. China, 2017, 12(1): 177-197.
[3] Tingting JIA,Ruju ZHAO,Libin LI. Automorphism group of Green ring of Sweedler Hopf algebra[J]. Front. Math. China, 2016, 11(4): 921-932.
[4] Yongsheng CHENG,Xiufu ZHANG. Representations and categorical realization of Hom-quasi-Hopf algebras[J]. Front. Math. China, 2015, 10(6): 1263-1281.
[5] Min LI, Xiuling WANG. Factorization of simple modules for certain restricted two-parameter quantum groups[J]. Front Math Chin, 2013, 8(1): 169-190.
[6] Guohua LIU, Quanguo CHEN, Haixing ZHU. Transmutation theory of a coquasitriangular weak Hopf algebra[J]. Front Math Chin, 2011, 6(5): 855-869.
[7] Tianshui MA, Haiying LI, Shuanhong WANG. A class of new braided Hopf algebras[J]. Front Math Chin, 2011, 6(2): 293-308.
[8] YANG Shilin. Automorphism groups of pointed Hopf algebras[J]. Front. Math. China, 2007, 2(2): 305-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed