Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (2) : 301-323    https://doi.org/10.1007/s11464-016-0610-3
RESEARCH ARTICLE
Constructions for key distribution patterns
Shangdi CHEN(),Huihui WEI
College of Science, Civil Aviation University of China, Tianjin 300300, China
 Download: PDF(217 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Key distribution patterns (KDPs) are finite incidence structures satisfying a certain property which makes them widely used in minimizing the key storage and ensuring the security of communication between users in a large network. We construct a new KDP using t-design and combine two ω-KDPs to give new (ω−1)-KDPs, which provide secure communication in a large network and minimize the amount of key storage.

Keywords Key predistribution scheme (KPS)      key distribution pattern (KDP)      incidence structure      design      wireless sensor network (WSN)     
Corresponding Author(s): Shangdi CHEN   
Issue Date: 27 December 2016
 Cite this article:   
Shangdi CHEN,Huihui WEI. Constructions for key distribution patterns[J]. Front. Math. China, 2017, 12(2): 301-323.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0610-3
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I2/301
1 Blom R. An optimal class of symmetric key generation systems. In: Advances in Cryptology: Proceedings of Eurocrypt 84. Lecture Notes in Comput Sci Vol 209. 1985, 335–338
https://doi.org/10.1007/3-540-39757-4_22
2 Blundo C, DeSantis A, Vaccaro U, Herzberg A, Kutten S, Yung M. Perfectly secure key distribution for dynamic conferences. In: Advances in Cryptology. Lecture Notes in Comput Sci, Vol 740. Berlin: Springer, 1993, 471–486
https://doi.org/10.1007/3-540-48071-4_33
3 Camtepe S A, Yener B. Combinatorial design of key distribution mechanisms for wireless sensor networks. In: Proc of the 9th European Symp on Research in Computer Security. Berlin: Springer, 2004, 293–308
https://doi.org/10.1007/978-3-540-30108-0_18
4 Chan H, Perrig A, Song D X. Random key pre-distribution schemes for sensor networks. In: Proc of 2003 IEEE Symp on Research in Security and Privacy. New York: ACM Press, 2003, 197–213
5 Dyer M, Fenner, Freize A, Thomason A. On key storage in secure networks. J Cryptology, 1995, 8: 189–200
https://doi.org/10.1007/BF00191355
6 Eschenauer L, Gligor V.A key management scheme for distributed sensor networks. In: Proceedings of 9th ACM Conference on Computer and Communication Security, 2002: 41–47
https://doi.org/10.1145/586110.586117
7 Jansen C J A. On the key storage requirements for secure terminals. Computer & Security, 1986, 5: 145–149
https://doi.org/10.1016/0167-4048(86)90138-0
8 Lee J, Stinson D R. Deterministic key pre-distribution schemes for distributed sensor networks. In: Proc of the 11th Int Workshop on Selected Areas in Cryptography. Berlin: Springer, 2004, 294–307
https://doi.org/10.1007/978-3-540-30564-4_21
9 Lee J, Stinson D R. On the construction of practical key predistribution schemes for distributed sensor networks using combinatorial designs. ACM T Inform Syst Se, 2008, 11: 1–35
https://doi.org/10.1145/1330295.1330297
10 Liu D, Ning P. Establishing pair-wise keys in distributed sensor networks. In: Proc of the 10th ACM Conf on Computer and Communications Security. New York: ACM Press, 2003, 41–77
11 Mitchell C J, Piper F C. Key storage in secure networks. Discrete Appl Math, 1988, 21: 215–228
https://doi.org/10.1016/0166-218X(88)90068-6
12 Novak J C. Generalized key distribution patterns. Doctoral Thesis. Univ of London, 2012
13 O’Keefe C M. Key distribution patterns using Minkowski planes. Des Codes Cryptogr, 1995, 5: 261–267
https://doi.org/10.1007/BF01388388
14 Quinn K A S. Some constructions for key distribution patterns. Des Codes Cryptogr, 1994, 4: 177–191
https://doi.org/10.1007/BF01578871
15 Quinn K A S. Bounds for key distribution patterns. J Cryptology, 1999, 12: 227–240
https://doi.org/10.1007/s001459900054
16 Rinaldi G. Key distribution patterns using tangent circle structures. Des Codes Cryptogr, 2004, 31: 289–300
https://doi.org/10.1023/B:DESI.0000015889.12620.21
17 Ruszink’o M. On the upper bound of the size of the r-cover-free families. J Combin Theory Ser A, 1994, 66: 302–310
https://doi.org/10.1016/0097-3165(94)90067-1
18 Shin S H, Bate J C. Generalization of key distribution patterns for every n-pair of users. J Appl Math Informatics, 2008, 26: 563–572
19 Stinson D R. Combinatorial designs and cryptography. In: Survey in Combinatorics. Cambridge: Cambridge Univ Press, 1993, 257–287
https://doi.org/10.1017/cbo9780511662089.010
20 Stinson D R. On some methods for unconditionally secure key distribution patterns and broadcast encryption. Des Codes Cryptogr, 1997, 12: 215–243
https://doi.org/10.1023/A:1008268610932
21 Stinson D R, Tran van Trung. Some new results on key distribution patterns and broadcast encryption. Des Codes Cryptogr, 1998, 14: 261–279
https://doi.org/10.1023/A:1008209004667
22 Stinson D R,Wei R. Generalised cover free families. Discrete Math, 2004, 279: 463–477
https://doi.org/10.1016/S0012-365X(03)00287-5
23 Stinson D R, Wei R, Zhu L. Some new bounds for cover free families. J Combin Theory Ser A, 2000, 90: 224–234
https://doi.org/10.1006/jcta.1999.3036
24 Wan Z X. Designs Theory.Beijing: Higher Education Press, 2009
https://doi.org/10.1142/7460
[1] Jiaxin SHEN, Shenglin ZHOU. Flag-transitive 2-υ,5,λ designs with sporadic socle[J]. Front. Math. China, 2020, 15(6): 1201-1210.
[2] Yuna ZHAO,Shengli ZHAO,Min-Qian LIU. A theory on constructing blocked two-level designs with general minimum lower order confounding[J]. Front. Math. China, 2016, 11(1): 207-235.
[3] Yan ZHU,Haiyan GUAN,Shenglin ZHOU. Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle[J]. Front. Math. China, 2015, 10(6): 1483-1496.
[4] Hong QIN,Zhenghong WANG. Application of minimum projection uniformity criterion in complementary designs for q-level factorials[J]. Front. Math. China, 2015, 10(2): 339-350.
[5] Guangzhou CHEN,Kejun CHEN,Yong ZHANG. Super-simple (5, 4)-GDDs of group type gu[J]. Front. Math. China, 2014, 9(5): 1001-1018.
[6] Yuhui YIN, Qiaozhen ZHANG, Min-Qian LIU. A two-stage variable selection strategy for supersaturated designs with multiple responses[J]. Front Math Chin, 2013, 8(3): 717-730.
[7] Yuanzhen HE, Mingyao AI. A new class of Latin hypercube designs with high-dimensional hidden projective uniformity[J]. Front Math Chin, 2011, 6(6): 1085-1093.
[8] Jing CHEN, Weijun LIU. Nonexistence of block-transitive 6-designs[J]. Front Math Chin, 2011, 6(5): 835-845.
[9] Jian WANG, Beiliang DU. Spectrum of resolvable directed quadruple systems[J]. Front Math Chin, 2010, 5(4): 717-726.
[10] ZHANG Aili, LIU Xiufeng. Chinese remainder codes[J]. Front. Math. China, 2006, 1(3): 452-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed