|
|
|
Constructions for key distribution patterns |
Shangdi CHEN( ),Huihui WEI |
| College of Science, Civil Aviation University of China, Tianjin 300300, China |
|
|
|
|
Abstract Key distribution patterns (KDPs) are finite incidence structures satisfying a certain property which makes them widely used in minimizing the key storage and ensuring the security of communication between users in a large network. We construct a new KDP using t-design and combine two ω-KDPs to give new (ω−1)-KDPs, which provide secure communication in a large network and minimize the amount of key storage.
|
| Keywords
Key predistribution scheme (KPS)
key distribution pattern (KDP)
incidence structure
design
wireless sensor network (WSN)
|
|
Corresponding Author(s):
Shangdi CHEN
|
|
Issue Date: 27 December 2016
|
|
| 1 |
Blom R. An optimal class of symmetric key generation systems. In: Advances in Cryptology: Proceedings of Eurocrypt 84. Lecture Notes in Comput Sci Vol 209. 1985, 335–338
https://doi.org/10.1007/3-540-39757-4_22
|
| 2 |
Blundo C, DeSantis A, Vaccaro U, Herzberg A, Kutten S, Yung M. Perfectly secure key distribution for dynamic conferences. In: Advances in Cryptology. Lecture Notes in Comput Sci, Vol 740. Berlin: Springer, 1993, 471–486
https://doi.org/10.1007/3-540-48071-4_33
|
| 3 |
Camtepe S A, Yener B. Combinatorial design of key distribution mechanisms for wireless sensor networks. In: Proc of the 9th European Symp on Research in Computer Security. Berlin: Springer, 2004, 293–308
https://doi.org/10.1007/978-3-540-30108-0_18
|
| 4 |
Chan H, Perrig A, Song D X. Random key pre-distribution schemes for sensor networks. In: Proc of 2003 IEEE Symp on Research in Security and Privacy. New York: ACM Press, 2003, 197–213
|
| 5 |
Dyer M, Fenner, Freize A, Thomason A. On key storage in secure networks. J Cryptology, 1995, 8: 189–200
https://doi.org/10.1007/BF00191355
|
| 6 |
Eschenauer L, Gligor V.A key management scheme for distributed sensor networks. In: Proceedings of 9th ACM Conference on Computer and Communication Security, 2002: 41–47
https://doi.org/10.1145/586110.586117
|
| 7 |
Jansen C J A. On the key storage requirements for secure terminals. Computer & Security, 1986, 5: 145–149
https://doi.org/10.1016/0167-4048(86)90138-0
|
| 8 |
Lee J, Stinson D R. Deterministic key pre-distribution schemes for distributed sensor networks. In: Proc of the 11th Int Workshop on Selected Areas in Cryptography. Berlin: Springer, 2004, 294–307
https://doi.org/10.1007/978-3-540-30564-4_21
|
| 9 |
Lee J, Stinson D R. On the construction of practical key predistribution schemes for distributed sensor networks using combinatorial designs. ACM T Inform Syst Se, 2008, 11: 1–35
https://doi.org/10.1145/1330295.1330297
|
| 10 |
Liu D, Ning P. Establishing pair-wise keys in distributed sensor networks. In: Proc of the 10th ACM Conf on Computer and Communications Security. New York: ACM Press, 2003, 41–77
|
| 11 |
Mitchell C J, Piper F C. Key storage in secure networks. Discrete Appl Math, 1988, 21: 215–228
https://doi.org/10.1016/0166-218X(88)90068-6
|
| 12 |
Novak J C. Generalized key distribution patterns. Doctoral Thesis. Univ of London, 2012
|
| 13 |
O’Keefe C M. Key distribution patterns using Minkowski planes. Des Codes Cryptogr, 1995, 5: 261–267
https://doi.org/10.1007/BF01388388
|
| 14 |
Quinn K A S. Some constructions for key distribution patterns. Des Codes Cryptogr, 1994, 4: 177–191
https://doi.org/10.1007/BF01578871
|
| 15 |
Quinn K A S. Bounds for key distribution patterns. J Cryptology, 1999, 12: 227–240
https://doi.org/10.1007/s001459900054
|
| 16 |
Rinaldi G. Key distribution patterns using tangent circle structures. Des Codes Cryptogr, 2004, 31: 289–300
https://doi.org/10.1023/B:DESI.0000015889.12620.21
|
| 17 |
Ruszink’o M. On the upper bound of the size of the r-cover-free families. J Combin Theory Ser A, 1994, 66: 302–310
https://doi.org/10.1016/0097-3165(94)90067-1
|
| 18 |
Shin S H, Bate J C. Generalization of key distribution patterns for every n-pair of users. J Appl Math Informatics, 2008, 26: 563–572
|
| 19 |
Stinson D R. Combinatorial designs and cryptography. In: Survey in Combinatorics. Cambridge: Cambridge Univ Press, 1993, 257–287
https://doi.org/10.1017/cbo9780511662089.010
|
| 20 |
Stinson D R. On some methods for unconditionally secure key distribution patterns and broadcast encryption. Des Codes Cryptogr, 1997, 12: 215–243
https://doi.org/10.1023/A:1008268610932
|
| 21 |
Stinson D R, Tran van Trung. Some new results on key distribution patterns and broadcast encryption. Des Codes Cryptogr, 1998, 14: 261–279
https://doi.org/10.1023/A:1008209004667
|
| 22 |
Stinson D R,Wei R. Generalised cover free families. Discrete Math, 2004, 279: 463–477
https://doi.org/10.1016/S0012-365X(03)00287-5
|
| 23 |
Stinson D R, Wei R, Zhu L. Some new bounds for cover free families. J Combin Theory Ser A, 2000, 90: 224–234
https://doi.org/10.1006/jcta.1999.3036
|
| 24 |
Wan Z X. Designs Theory.Beijing: Higher Education Press, 2009
https://doi.org/10.1142/7460
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|