Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (5) : 1163-1181    https://doi.org/10.1007/s11464-017-0633-4
RESEARCH ARTICLE
Contact process on regular tree with random vertex weights
Yu PAN1(), Dayue CHEN1, Xiaofeng XUE2
1. LMAM, Peking University, Beijing 100871, China
2. School of Science, Beijing Jiaotong University, Beijing 100044, China
 Download: PDF(212 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper is concerned with the contact process with random vertex weights on regular trees, and studies the asymptotic behavior of the critical infection rate as the degree of the trees increasing to infinity. In this model, the infection propagates through the edge connecting vertices xand yat rate λρ(x)ρ(y) for some λ>0,where {ρ(x), xTd} are independent and identically distributed (i.i.d.) vertex weights. We show that when dis large enough, there is a phase transition at λc(d) ∈ (0,) such that for λ<λc (d),the contact process dies out, and for λ>λc(d),the contact process survives with a positive probability. Moreover, we also show that there is another phase transition at λe(d) such that for λ<λe(d),the contact process dies out at an exponential rate. Finally, we show that these two critical values have the same asymptotic behavior as dincreases.

Keywords Contact process      random vertex weights      critical value      asymptotic behavior     
Corresponding Author(s): Yu PAN   
Issue Date: 30 September 2017
 Cite this article:   
Yu PAN,Dayue CHEN,Xiaofeng XUE. Contact process on regular tree with random vertex weights[J]. Front. Math. China, 2017, 12(5): 1163-1181.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-017-0633-4
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I5/1163
1 AndjelE D. Survival of multidimensional contact process in random environments.Bull Braz Math Soc (NS), 1992, 23(1): 109–119
https://doi.org/10.1007/BF02584814
2 BezuidenhoutC, GrimmettG. The critical contact process dies out.Ann Probab, 1990, 18: 1462–1482
https://doi.org/10.1214/aop/1176990627
3 BramsonM, DurrettR, SchonmannR H. The contact process in a random environment.Ann Probab, 1991, 19(3): 960–983
https://doi.org/10.1214/aop/1176990331
4 ChenX X, YaoQ. The complete convergence theorem holds for contact processes on open clusters of ℤd× ℤ+.J Stat Phys, 2009, 135: 651–680
https://doi.org/10.1007/s10955-009-9756-7
5 GriffeathD. The binary contact path process.Ann Probab, 1983, 11: 692–705
https://doi.org/10.1214/aop/1176993514
6 HarrisT E. Contact interactions on a lattice.Ann Probab, 1974, 2: 969–988
https://doi.org/10.1214/aop/1176996493
7 HarrisT E. Additive set-valued Markov processes and graphical methods.Ann Probab, 1978, 6: 355–378
https://doi.org/10.1214/aop/1176995523
8 KestenH. Asymptotics in high dimensions for percolation. In: Grimmett G R,Welsh D J A, eds. Disorder in Physical Systems: A Volume in Honour of John M. Hammersley on the Occasion of His 70th Birthday. Oxford: Oxford Univ Press, 1990, 219–240
9 KleinA. Extinction of contact and percolation processes in a random environment.Ann Probab, 1994, 22(3): 1227–1251
https://doi.org/10.1214/aop/1176988601
10 LiggettT M. Interacting Particle Systems.New York: Springer, 1985
https://doi.org/10.1007/978-1-4613-8542-4
11 LiggettT M. Spatially inhomogeneous contact processes. In: Spatial Stochastic Processes: A Festschrift in Honor of the Seventieth Birthday of Ted Harris.Boston: Birkhäuser, 1991, 105–140
https://doi.org/10.1007/978-1-4612-0451-0_6
12 LiggettT M. The survival of one-dimensional contact processes in a random environment.Ann Probab, 1992, 20: 696–723
https://doi.org/10.1214/aop/1176989801
13 LiggettT M. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes.New York: Springer, 1999
https://doi.org/10.1007/978-3-662-03990-8
14 NewmanC, VolchanS B. Persistent survival of one-dimensional contact processes in random environments.Ann Probab, 1996, 24: 411–421
https://doi.org/10.1214/aop/1042644723
15 PemantleR. The contact process on trees.Ann Probab, 1992, 20: 2089–2116
https://doi.org/10.1214/aop/1176989541
16 PemantleR, StaceyA M. The branching random walk and contact process on Galton-Watson and nonhomogeneous trees.Ann Probab, 2001, 29: 1563–1590
17 PetersonJ. The contact process on the complete graph with random vertex-dependent infection rates.Stochastic Process Appl, 2011, 121(3): 609–629
https://doi.org/10.1016/j.spa.2010.11.003
18 RemenikD. The contact process in a dynamic random environment.Ann Appl Probab, 2008, 18(6): 2392–2420
https://doi.org/10.1214/08-AAP528
19 XueX F. Contact processes with random connection weights on regular graphs.Phys A, 2013, 392(20): 4749–4759
https://doi.org/10.1016/j.physa.2013.06.029
20 XueX F. Contact processes with random vertex weights on oriented lattices.ALEA Lat Am J Probab Math Stat, 2015, 12: 245–259
21 XueX F. Critical value for contact processes with random recovery rates and edge weights on regular tree.Phys A, 2016, 462: 793–806
https://doi.org/10.1016/j.physa.2016.06.001
[1] Jian LU. Anisotropic inverse harmonic mean curvature flow[J]. Front. Math. China, 2014, 9(3): 509-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed