Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (3) : 509-521    https://doi.org/10.1007/s11464-014-0371-9
RESEARCH ARTICLE
Anisotropic inverse harmonic mean curvature flow
Jian LU()
Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310032, China
 Download: PDF(134 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the evolution of convex hypersurfaces X(·,?t) with initial X(,?0)=θX0 at a rate equal to H-f along its outer normal, where H is the inverse of harmonic mean curvature of X(,?t), X0 is a smooth, closed, and uniformly convex hypersurface. We find a θ?>0 and a sufficient condition about the anisotropic function f, such that if θ>θ*,? , then X(,?t) remains uniformly convex and expands to infinity as t→ +∞ and its scaling, X(,?t)e-nt, converges to a sphere. In addition, the convergence result is generalized to the fully nonlinear case in which the evolution rate is log H-log f instead of H-f.

Keywords Curvature flow      parabolic equation      asymptotic behavior     
Corresponding Author(s): Jian LU   
Issue Date: 24 June 2014
 Cite this article:   
Jian LU. Anisotropic inverse harmonic mean curvature flow[J]. Front. Math. China, 2014, 9(3): 509-521.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0371-9
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I3/509
1 AndrewsB. Contraction of convex hypersurfaces by their affine normal. J Differential Geom, 1996, 43: 207-229
2 ChouK S, WangX J. A logarithmic Gauss curvature flow and the Minkowski problem. Ann Inst H Poincarè Anal Non Linèaire, 2000, 17: 733-751
3 ChouK S, ZhuX P. Anisotropic curvature flows for plane curves. Duke Math J, 1999, 97: 579-619
doi: 10.1215/S0012-7094-99-09722-3
4 ChowB, LiouL P, TsaiD H. On the nonlinear parabolic equation ∂tu = F(Δu + nu) on Sn.Comm Anal Geom, 1996, 4: 415-434
5 ChowB, TsaiD H. Expansion of convex hypersurfaces by nonhomogeneous functions of curvature. Asian J Math, 1997, 1: 769-784
6 HamiltonR S. Four-manifolds with positive Ricci curvature. J Differential Geom, 1986, 24: 153-179
7 JianH Y. Deforming convex hypersurfaces to a hypersurface with prescribed harmonic mean curvature. Sci China Ser A, 1999, 42: 1059-1065
doi: 10.1007/BF02889507
8 JianH Y, LiuY N. Long-time existence of mean curvature flow with external force fields. Pacific J Math, 2008, 234: 311-325
doi: 10.2140/pjm.2008.234.311
9 JuH J, LuJ, JianH Y. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Comm Pure Appl Anal, 2010, 9: 963-973
doi: 10.3934/cpaa.2010.9.963
10 LiuY N, JianH Y. Evolution of hypersurfaces by the mean curvature minus an external force field. Sci China Ser A, 2007, 50: 231-239
doi: 10.1007/s11425-007-2077-x
11 LiuY N, JianH Y. A curve flow evolved by a fourth order parabolic equation. Sci China Ser A, 2009, 52: 2177-2184
doi: 10.1007/s11425-009-0143-2
12 LiuY N, JianH Y. Evolution of spacelike hypersurfaces by mean curvature minus external force field in Minkowski space. Adv Nonlinear Stud, 2009, 9: 513-522
13 UrbasJ I E. An expansion of convex hypersurfaces. J Differential Geom, 1991, 33: 91-125
14 WangX J. Existence of convex hypersurfaces with prescribed Gauss-Kronecker curvature. Trans Amer Math Soc, 1996, 348: 4501-4524
doi: 10.1090/S0002-9947-96-01650-9
[1] Yu PAN, Dayue CHEN, Xiaofeng XUE. Contact process on regular tree with random vertex weights[J]. Front. Math. China, 2017, 12(5): 1163-1181.
[2] Jing AN,Zhendong LUO,Hong LI,Ping SUN. Reduced-order extrapolation spectral-finite difference scheme based on POD method and error estimation for three-dimensional parabolic equation[J]. Front. Math. China, 2015, 10(5): 1025-1040.
[3] Yuelong TANG, Yanping CHEN. Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems[J]. Front Math Chin, 2013, 8(2): 443-464.
[4] Yannan LIU. Evolution of hypersurfaces by powers of mean curvature minus an external force field[J]. Front Math Chin, 2012, 7(4): 717-723.
[5] Yannan LIU, . Evolution of noncompact hypersurfaces by mean curvature minus a kind of external force field[J]. Front. Math. China, 2010, 5(2): 311-317.
[6] QIAO Lan, ZHENG Sining. Asymptotic analysis of a coupled nonlinear parabolic system[J]. Front. Math. China, 2008, 3(1): 87-99.
[7] HAN Xiaoli, HAN Xiaoli, LI Jiayu, LI Jiayu. On symplectic mean curvature flows[J]. Front. Math. China, 2007, 2(1): 47-60.
[8] XIN Yuanlong. Rigidity and mean curvature flow via harmonic Gauss maps[J]. Front. Math. China, 2006, 1(3): 325-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed