Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (5) : 1025-1040    https://doi.org/10.1007/s11464-015-0469-8
RESEARCH ARTICLE
Reduced-order extrapolation spectral-finite difference scheme based on POD method and error estimation for three-dimensional parabolic equation
Jing AN1,Zhendong LUO2,*(),Hong LI3,Ping SUN1
1. School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, China
2. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
3. School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
 Download: PDF(160 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, a classical spectral-finite difference scheme (SFDS) for the three-dimensional (3D) parabolic equation is reduced by using proper orthogonal decomposition (POD) and singular value decomposition (SVD). First, the 3D parabolic equation is discretized in spatial variables by using spectral collocation method and the discrete scheme is transformed into matrix formulation by tensor product. Second, the classical SFDS is obtained by difference discretization in time-direction. The ensemble of data are comprised with the first few transient solutions of the classical SFDS for the 3D parabolic equation and the POD bases of ensemble of data are generated by using POD technique and SVD. The unknown quantities of the classical SFDS are replaced with the linear combination of POD bases and a reducedorder extrapolation SFDS with lower dimensions and sufficiently high accuracy for the 3D parabolic equation is established. Third, the error estimates between the classical SFDS solutions and the reduced-order extrapolation SFDS solutions and the implementation for solving the reduced-order extrapolation SFDS are provided. Finally, a numerical example shows that the errors of numerical computations are consistent with the theoretical results. Moreover, it is shown that the reduced-order extrapolation SFDS is effective and feasible to find the numerical solutions for the 3D parabolic equation.

Keywords Singular value decomposition (SVD)      proper orthogonal decomposition (POD) bases      spectral-finite difference scheme (SFDS)      error estimation      parabolic equation     
Corresponding Author(s): Zhendong LUO   
Issue Date: 24 June 2015
 Cite this article:   
Jing AN,Zhendong LUO,Hong LI, et al. Reduced-order extrapolation spectral-finite difference scheme based on POD method and error estimation for three-dimensional parabolic equation[J]. Front. Math. China, 2015, 10(5): 1025-1040.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0469-8
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I5/1025
1 Afanasiev K, Hinze M. Adaptive control of a wake flow using proper orthogonal decomposition. Lect Notes Pure Appl Math, 2001, 216: 317-332
2 Algazi V, Sakrison D. On the optimality of Karhunen-Lo`eve expansion. IEEE Trans Inform Theory, 1969, 15: 319-321
https://doi.org/10.1109/TIT.1969.1054286
3 Arian E, Fahl M, Sachs E W. Trust-region proper orthogonal decomposition models by optimization method. In: Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, 2002. 2002, 3300-3305
4 Aubry N, Holmes P, Lumley J L, Stone E. The dynamics of coherent structures in the wall region of a turbulent boundary layer. J Fluid Dynamics, 1988, 192: 115-173
https://doi.org/10.1017/s0022112088001818
5 Cao Y H, Zhu J, Luo Z H, Navon I M. Reduced order modeling of the upper tropical Pacific Ocean model using proper orthogonal decomposition. Comput Math Appl, 2006, 52: 1373-1386
https://doi.org/10.1016/j.camwa.2006.11.012
6 Cao Y H, Zhu J, Navon I M, Luo Z D. A reduced order approach to four-dimensional variational data assimilation using proper orthogonal decomposition. Int J Numer Meth Fluids, 2007, 53: 1571-1583
https://doi.org/10.1002/fld.1365
7 Fox L, Parker I B. Chebyshev Polynomials in Numerical Analysis. Oxford: Oxford University Press, 1968
8 Fukunaga K. Introduction to Statistical Recognition. New York: Academic Press, 1990
9 Graham M, Kevrekidis I. Alternative approaches to the Karhunen-Loève decomposition for model reduction and data analysis. Comput Chem Eng, 1996, 20: 495-506
https://doi.org/10.1016/0098-1354(95)00040-2
10 Holmes P, Lumley J L, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge: Cambridge University Press, 1996
https://doi.org/10.1017/CBO9780511622700
11 Jolliffe I T. Principal Component Analysis. Berlin: Springer-Verlag, 2002
12 Joslin R D, Gunzburger M D, Nicolaides R, Erlebacher G, Hussaini M Y. A selfcontained automated methodology for optimal flow control validated for transition delay. AIAA Journal, 1997, 35: 816-824
https://doi.org/10.2514/2.7452
13 Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for parabolic problems. Numer Math, 2001, 90: 117-148
https://doi.org/10.1007/s002110100282
14 Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J Numer Anal, 2002, 40(2): 492-515
https://doi.org/10.1137/S0036142900382612
15 Kunisch K, Volkwein S. Proper orthogonal decomposition for optimality systems. ESAIM: Math Model Numer Anal, 2008, 42(1): 1-23
https://doi.org/10.1051/m2an:2007054
16 Lanczos C. Trigonometric interpolation of empirical and analytical functions. J Math Phys, 1938, 17: 123-199
17 Li H R, Luo Z D, Chen J. Numerical simulation based on proper orthogonal decomposition for two-dimensional solute transport problems. Appl Math Model, 2011, 35(5): 2489-2498
https://doi.org/10.1016/j.apm.2010.11.064
18 Lumley J L. Coherent structures in turbulence. In: Meyer R E, ed. Transition and Turbulence. Proceedings of the Symposium on Transition and Turbulence in Fluids, Madison, WI, October 13-15, 1980. New York: Academic Press, 1981, 215-242
https://doi.org/10.1016/b978-0-12-493240-1.50017-x
19 Luo Z D, Chen J, Navon I M, Yang X Z. Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the non- stationary Navier-Stokes equations. SIAM J Numer Anal, 2008, 47(1): 1-19
https://doi.org/10.1137/070689498
20 Luo Z D, Chen J, Navon I M, Zhu J. An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems. Int J Numer Meth Fluids, 2009, 60(4): 409-436
https://doi.org/10.1002/fld.1900
21 Luo Z D, Chen J, Sun P, Yang X Z. Finite element formulation based on proper orthogonal decomposition for parabolic equations. Sci China Ser A: Math, 2009, 52(3): 585-596
https://doi.org/10.1007/s11425-008-0125-9
22 Luo Z D, Chen J, Zhu J, Wang R W, Navon I M. An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model. Int J Numer Meth Fluids, 2007, 55(2): 143-161
https://doi.org/10.1002/fld.1452
23 Luo Z D, Du J, Xie Z H, Guo Y. A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the no-stationary Navier-Stokes equations. Int J Numer Meth Eng, 2011, 88(1): 31-46
https://doi.org/10.1002/nme.3161
24 Luo Z D, Li H, Zhou Y J, Huang X M. A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem. J Math Anal Appl, 2012, 385: 310-321
https://doi.org/10.1016/j.jmaa.2011.06.057
25 Luo Z D, Li H, Zhou Y J, Xie Z H. A reduced finite element formulation and error estimates based on POD method for two-dimensional solute transport problems. J Math Anal Appl, 2012, 385: 371-383
https://doi.org/10.1016/j.jmaa.2011.06.051
26 Luo Z D, Ou Q L, Xie Z X. A reduced finite difference scheme and error estimates based on POD method for the non-stationary Stokes equation. Appl Math Mech, 2011, 32(7): 847-858
https://doi.org/10.1007/s10483-011-1464-9
27 Luo Z D, Wang R W, Zhu J. Finite difference scheme based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations. Sci China Ser A: Math, 2007, 50(8): 1186-1196
https://doi.org/10.1007/s11425-007-0081-9
28 Luo Z D, Xie Z H, Chen J. A reduced MFE formulation based on POD for the nonstationary conduction-convection problems. Acta Math Sci Ser B Engl Ed, 2011, 31(5): 1765-1785
29 Luo Z D, Xie Z H, Shang Y Q, Chen J. A reduced finite volume element formulation and numerical simulations based on POD for parabolic equations. J Comput Appl Math, 2011, 235(8): 2098-2111
https://doi.org/10.1016/j.cam.2010.10.008
30 Luo Z D, Yang X Z, Zhou Y J. A reduced finite difference scheme based on singular value decomposition and proper orthogonal decomposition for Burgers equation. J Comput Appl Math, 2009, 229(1): 97-107
https://doi.org/10.1016/j.cam.2008.10.026
31 Luo Z D, Zhou Y J, Yang X Z. A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation. Appl Numer Math, 2009, 59(8): 1933-1946
https://doi.org/10.1016/j.apnum.2008.12.034
32 Luo Z D, Zhu J, Wang R W, Navon I M. Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model. Comput Meth Appl Mech Eng, 2007, 196(41-44): 4184-4195
https://doi.org/10.1016/j.cma.2007.04.003
33 Rajaee M, Karlsson S K F, Sirovich L. Low dimensional description of free sheer flow coherent structures and their dynamical behavior. J Fluid Mech, 1994, 258: 1401-1402
https://doi.org/10.1017/S0022112094003228
34 Selten F. Baroclinic empirical orthogonal functions as basis functions in an atmospheric model. J Atmospheric Sci, 1997, 54: 2100-2114
https://doi.org/10.1175/1520-0469(1997)054<2099:BEOFAB>2.0.CO;2
35 Shvartsman S, Kevrekisis I. Low-dimensional approximation and control of periodic solutions in spatially extended systems. Phys Rev E, 1998, 58(3): 361-368
https://doi.org/10.1103/PhysRevE.58.361
36 Sirovich L. Turbulence and the dynamics of coherent sructures: part I–III. Quart Appl Math, 1987, 45(3): 561-590
37 Sun P, Luo Z D, Zhou Y J. Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations. Appl Numer Math, 2010, 60(1-2): 154-164
https://doi.org/10.1016/j.apnum.2009.10.008
38 Trefethen L N. Spectral Method in MATLAB. Philadephia: SIAM, 2000
https://doi.org/10.1137/1.9780898719598
39 Trültzsch F, Volkwein S. POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput Optim Appl, 2009, 44(1): 83-115
https://doi.org/10.1007/s10589-008-9224-3
40 Weideman J A C, Reddy S C. A Matlab differentiation matrix suite. ACM Trans Math Software, 2000, 26: 465-511
https://doi.org/10.1145/365723.365727
[1] Jian LU. Anisotropic inverse harmonic mean curvature flow[J]. Front. Math. China, 2014, 9(3): 509-521.
[2] Yuelong TANG, Yanping CHEN. Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems[J]. Front Math Chin, 2013, 8(2): 443-464.
[3] Xu KONG, Yaolin JIANG. Structured multi-way arrays and their applications[J]. Front Math Chin, 2013, 8(2): 345-369.
[4] Yannan LIU. Evolution of hypersurfaces by powers of mean curvature minus an external force field[J]. Front Math Chin, 2012, 7(4): 717-723.
[5] Yannan LIU, . Evolution of noncompact hypersurfaces by mean curvature minus a kind of external force field[J]. Front. Math. China, 2010, 5(2): 311-317.
[6] QIAO Lan, ZHENG Sining. Asymptotic analysis of a coupled nonlinear parabolic system[J]. Front. Math. China, 2008, 3(1): 87-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed