Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (5) : 1057-1084    https://doi.org/10.1007/s11464-017-0654-z
RESEARCH ARTICLE
Maximal estimate for solutions to a class of dispersive equation with radial initial value
Yong DING1, Yaoming NIU2,1()
1. School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems (BNU), Ministry of Education, Beijing 100875, China
2. Faculty of Mathematics, Baotou Teachers’ College, Baotou 014030, China
 Download: PDF(252 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Consider the general dispersive equation defined by {itu+ϕ(Δ)u=0,(x,t)?n×?,u(x,0)=f(x),f(?n),where φ(Δ) is a pseudo-differential operator with symbol φ(|ξ|). In this paper, for φ satisfying suitable growth conditions and the radial initial data f in Sobolev space, we give the local and global Lq estimate for the maximal operator Sϕ* defined by Sϕ*f(x) = sup0<t<1|St,φf(x)|, where St,φfis the solution of equation (∗). These estimates imply the a.e. convergence of the solution of equation (∗).

Keywords Dispersive equation      maximal operator      local estimate      global estimate     
Corresponding Author(s): Yaoming NIU   
Issue Date: 30 September 2017
 Cite this article:   
Yong DING,Yaoming NIU. Maximal estimate for solutions to a class of dispersive equation with radial initial value[J]. Front. Math. China, 2017, 12(5): 1057-1084.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-017-0654-z
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I5/1057
1 AdamsR A, FournierJ J F. Sobolev Spaces.Pure and Applied Mathematics, Vol 140. Amsterdam: Elsevier, 2003
2 BerghJ, LöfströmJ. Interpolation Spaces.Grundlehren Math Wiss, Vol 223, Berlin: Springer-Verlag, 1976
https://doi.org/10.1007/978-3-642-66451-9
3 BourgainJ. A remark on Schrödinger operators.Israel J Math, 1992, 77: 1–16
https://doi.org/10.1007/BF02808007
4 BourgainJ. On the Schrödinger maximal function in higher dimension.Proc Steklov Inst Math, 2013, 280: 46–60
https://doi.org/10.1134/S0081543813010045
5 BourgainJ. A note on the Schrödinger maximal function.J Anal Math, 2016, 130: 393–396
https://doi.org/10.1007/s11854-016-0042-8
6 CarberyA. Radial Fourier multipliers and associated maximal functions.In: Peral I, Rubio de Francia J L, eds. Recent Progress in Fourier Analysis. North-Holland Math Stud, Vol 111. Amsterdam: North-Holland, 1985, 49–56
https://doi.org/10.1016/S0304-0208(08)70279-2
7 CarlesonL. Some analytical problems related to statistical mechanics.In: Benedetto J J, ed. Euclidean Harmonic Analysis. Lecture Notes in Math, Vol 779. Berlin: Springer, 1979, 5–45
https://doi.org/10.1007/BFb0087666
8 ChoY, LeeS. Strichartz estimates in spherical coordinates.Indiana Univ Math J, 2013, 62: 991–1020
https://doi.org/10.1512/iumj.2013.62.4970
9 ChoY, LeeS, OzawaT. On small amplitude solutions to the generalized Boussinesq equations.Discrete Contin Dyn Syst, 2007, 17: 691–711
https://doi.org/10.3934/dcds.2007.17.691
10 CowlingM. Pointwise behavior of solutions to Schrödinger equations.In: Mauceri G, Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 992. Berlin: Springer, 1983, 83–90
11 DahlbergB, KenigC. A note on the almost everywhere behaviour of solutions to the Schrödinger equation.In: Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 908. Berlin: Springer, 1982, 205–209
12 DingY, NiuY. Global L2 estimates for a class maximal operators associated to general dispersive equations.J Inequal Appl, 2015, 199: 1–21
13 DingY, NiuY. Weighted maximal estimates along curve associated with dispersive equations.Anal Appl (Singap), 2017, 15: 225–240
https://doi.org/10.1142/S021953051550027X
14 DingY, NiuY. Convergence of solutions of general dispersive equations along curve.Chin Ann Math Ser B (to appear)
15 DuX, GuthL, LiX.A sharp Schrödinger maximal estimate in ℝ2.Ann of Math, 2017, 186: 607–640
https://doi.org/10.4007/annals.2017.186.2.5
16 FrölichJ, LenzmannE. Mean-Field limit of quantum Bose gases and nonlinear Hartree equation.Sémin Équ Dériv Partielles, 2004, 19: 1–26
17 GuoZ, PengL, WangB. Decay estimates for a class of wave equations.J Func Anal, 2008, 254: 1642–1660
https://doi.org/10.1016/j.jfa.2007.12.010
18 GuoZ, WangY. Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations.J Anal Math, 2014, 124: 1–38
https://doi.org/10.1007/s11854-014-0025-6
19 KenigC, PonceG, VegaL.Well-posedness of the initial value problem for the Kortewegde Vries equation.J Amer Math Soc, 1991, 4: 323–347
https://doi.org/10.1090/S0894-0347-1991-1086966-0
20 KenigC, RuizA. A strong type (2; 2) estimate for a maximal operator associated to the Schrödinger equations.Trans Amer Math Soc, 1983, 280: 239–246
21 KriegerJ, LenzmannE, RaphaëlP.Nondispersive solutions to the L2-critical half-wave equation.Arch Ration Mech Anal, 2013, 209: 61–129
https://doi.org/10.1007/s00205-013-0620-1
22 LaskinN. Fractional quantum mechanics.Phys Rev E,2002, 62: 3135–3145
https://doi.org/10.1103/PhysRevE.62.3135
23 LeeS. On pointwise convergence of the solutions to Schrödinger equations in ℝ2.Int Math Res Not IMRN, 2006, Art ID 32597: 1–21
24 MoyuaA, VargasA, VegaL. Schrödinger maximal function and restriction properties of the Fourier transform.Int Math Res Not IMRN, 1996, 16: 703–815
25 MuckenhouptB. Weighted norm inequalities for the Fourier transform.Trans Amer Math Soc, 1983, 276: 729–742
https://doi.org/10.1090/S0002-9947-1983-0688974-X
26 PrestiniE. Radial functions and regularity of solutions to the Schrödinger equation.Monatsh Math, 1990, 109: 135–143
https://doi.org/10.1007/BF01302933
27 RogersK. A local smoothing estimate for the Schrödinger equation. Adv Math, 2008, 219: 2105–2122
https://doi.org/10.1016/j.aim.2008.08.008
28 RogersK, VillarroyaP. Global estimates for the Schrödinger maximal operator.Ann Acad Sci Fenn Math, 2007, 32: 425–435
29 SjölinP. Convolution with oscillating kernels.Indiana Univ Math J, 1981, 30: 47–55
https://doi.org/10.1512/iumj.1981.30.30004
30 SjölinP. Regularity of Solutions to the Schrödinger equation.Duke Math J, 1987, 55: 699–715
https://doi.org/10.1215/S0012-7094-87-05535-9
31 SjölinP. Global maximal estimates for solutions to the Schrödinger equation.Studia Math, 1994, 110: 105–114
https://doi.org/10.4064/sm-110-2-105-114
32 SjölinP. Radial functions and maximal estimates for solutions to the Schrödinger equation.J Aust Math Soc Ser A, 1995, 59: 134–142
https://doi.org/10.1017/S1446788700038520
33 SjölinP. Lp maximal estimates for solutions to the Schrödinger equations.Math Scand, 1997, 81: 36–68
https://doi.org/10.7146/math.scand.a-12865
34 SjölinP. Homogeneous maximal estimates for solutions to the Schrödinger equation.Bull Inst Math Acad Sin, 2002, 30: 133–140
35 SjölinP. Spherical harmonics and maximal estimates for the Schrödinger equation.Ann Acad Sci Fenn Math, 2005, 30: 393–406
36 SjölinP. Radial functions and maximal operators of Schrödinger type.Indiana Univ Math J, 2011, 60: 143–159
https://doi.org/10.1512/iumj.2011.60.4215
37 SteinE M. Oscillatory integrals in Fourier analysis.In: Stein E M, ed. Beijing Lectures in Harmonic Analysis. Ann of Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 307–355
38 SteinE M, WeissG.Introduction to Fourier Analysis on Euclidean Spaces.Princeton: Princeton Univ Press, 1971
39 TaoT. A sharp bilinear restrictions estimate for paraboloids.Geom Funct Anal, 2003, 13: 1359–1384
https://doi.org/10.1007/s00039-003-0449-0
40 TaoT, VargasA. A bilinear approach to cone multipliers II. Applications.Geom Funct Anal, 2000, 10: 216–258
https://doi.org/10.1007/s000390050007
41 VegaL. Schrödinger equations: Pointwise convergence to the initial data.Proc Amer Math Soc, 1988, 102: 874–878
[1] Senhua LAN, Tie LI, Yaoming NIU. Dimension of divergence sets for dispersive equation[J]. Front. Math. China, 2020, 15(2): 317-331.
[2] Xianming HOU, Huoxiong WU. Limiting weak-type behaviors for Riesz transforms and maximal operators in Bessel setting[J]. Front. Math. China, 2019, 14(3): 535-550.
[3] Shuli GONG, Bolin MA. Maximal operators of commutators of Bochner-Riesz means with Lipschitz functions[J]. Front Math Chin, 2011, 6(3): 427-447.
[4] Haibo LIN, Dachun YANG. Spaces of type BLO on non-homogeneous metric measure[J]. Front Math Chin, 2011, 6(2): 271-292.
[5] XU Jing-shi. Point-wise Multipliers of Herz-type Besov Spaces and Their Applications[J]. Front. Math. China, 2006, 1(1): 110-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed