Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (1) : 67-85    https://doi.org/10.1007/s11464-017-0676-6
RESEARCH ARTICLE
A parametrized compactness theorem under bounded Ricci curvature
Xiang LI, Shicheng XU()
School of Mathematical Sciences, Capital Normal Universiy, Beijing 100048, China
 Download: PDF(228 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We prove a parametrized compactness theorem on manifolds of bounded Ricci curvature, upper bounded diameter, and lower bounded injectivity radius.

Keywords Gromov-Hausdorff distance      almost Riemannian submersion      parametrized compactness      fiber bundle     
Corresponding Author(s): Shicheng XU   
Issue Date: 12 January 2018
 Cite this article:   
Xiang LI,Shicheng XU. A parametrized compactness theorem under bounded Ricci curvature[J]. Front. Math. China, 2018, 13(1): 67-85.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-017-0676-6
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I1/67
1 Anderson M T. Convergence and rigidity of manifolds under Ricci curvature bounds. Invent Math, 1990, 102(1): 429–445
https://doi.org/10.1007/BF01233434
2 Berestovskii V N, Guijarro L. A metric characterization of Riemannian submersions. Ann Global Anal Geom, 2000, 18(6):577–588
https://doi.org/10.1023/A:1006683922481
3 Cheeger J. Comparison and Finiteness Theorems for Riemannian Manifolds. Ph D Thesis. Princeton: Princeton Univ, 1967
4 Cheeger J. Finiteness theorems for Riemannian manifolds. Amer J Math, 1970, 92(1): 61–74
https://doi.org/10.2307/2373498
5 Cheeger J, Fukaya K, Gromov M. Nilpotent structures and invariant metrics on collapsed manifolds. J Amer Math Soc, 1992, 5(2): 327–372
https://doi.org/10.1090/S0894-0347-1992-1126118-X
6 Dai X Z, Wei G F. A comparison-estimate of Topogonov type for Ricci curvature. Math Ann, 1995, 303(2): 297–306
https://doi.org/10.1007/BF01460991
7 Dai X Z, Wei G F, Ye R G. Smoothing Riemannian metrics with Ricci curvature bounds. Manuscripta Math, 1996, 90(1): 49–61
https://doi.org/10.1007/BF02568293
8 Fukaya K. Collapsing Riemannian manifolds to ones with lower dimensions. J Differential Geom, 1987, 25: 139–156
https://doi.org/10.4310/jdg/1214440728
9 Fukaya K. A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters. J Differential Geom, 1988, 28: 1–21
https://doi.org/10.4310/jdg/1214442157
10 Green R E, Wu H. Lipschitz convergence of Riemannian manifolds. Pacific J Math, 1988, 131: 119–141
https://doi.org/10.2140/pjm.1988.131.119
11 Gromov M. Structures métriques pour les variétés riemanniennes. Textes Math, 1. Paris: CEDIC/Fernand Nathan, 1981
12 Hamilton R S. Three-manifolds with positive Ricci curvature. J Differential Geom, 1982, 17(2): 255–306
https://doi.org/10.4310/jdg/1214436922
13 Jiang Z H, Li X, Xu S C. Stability of nilpotent structures of collapsed manifolds on the same scale. Preprint, 2017
14 Kapovitch V. Perelman’s stability theorem. In: Metric and Comparison Geometry. Surveys in Differential Geometry, Vol XI. Boston: International Press, 2007, 103–136
15 Kasue A. A convergence theorem for Riemannian manifolds and some applications. Nagoya Math J, 1989, 114: 21–51
https://doi.org/10.1017/S0027763000001380
16 O’Neill B. The fundamental equations of a submersion. Michigan Math J, 1966, 13(4): 459–469
https://doi.org/10.1307/mmj/1028999604
17 Perelman G. Alexandrov spaces with curvatures bounded from below II. Preprint, 1991
18 Peters S. Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian manifolds. J Reine Angew Math, 1984, 349: 77–82
19 Peters S. Convergence of Riemannian manifolds. Compos Math, 1987, 62(1): 3–16
20 Petersen P. Riemannian Geometry.3rd ed. Grad Texts in Math, Vol 171. Berlin: Springer, 2016
https://doi.org/10.1007/978-3-319-26654-1
21 Postnikov M M. Geometry VI: Riemannian Geometry. Encyclopaedia Math Sci, Vol 91. Berlin: Springer-Verlag, 2001
https://doi.org/10.1007/978-3-662-04433-9
22 Rong X C. Convergence and collapsing theorems in Riemannian geometry. In: Ji L Z, Li P, Schoen R, Simon L, eds. Handbook of Geometric Analysis, Vol II. Adv Lect Math, Vol 13. Beijing/Boston: Higher Education Press/International Press, 2010, 193–298
23 Rong X C, Xu S C. Stability of almost submetries. Front Math China, 2011, 6(1): 137–154
https://doi.org/10.1007/s11464-010-0076-7
24 Rong X C, Xu S C. Stability of eε-lipschitz and co-lipschitz maps in Gromov-Hausdorff topology. Adv Math, 2012, 231(2): 774–797
https://doi.org/10.1016/j.aim.2012.05.018
25 Tapp K. Bounded Riemannian submersions. Indiana Univ Math J, 2000, 49(2): 637–654
https://doi.org/10.1512/iumj.2000.49.1705
26 Tapp K. Finiteness theorems for submersions and souls. Proc Amer Math Soc, 2002, 130(6): 1809–1817
https://doi.org/10.1090/S0002-9939-01-06244-X
27 Walczak P. A finiteness theorem for Riemannian submersions. Ann Polon Math, 1992, 57: 283–290
https://doi.org/10.4064/ap-57-3-283-290
28 Walczak P. Erratum to the paper A finiteness theorem for Riemannian submersions. Ann Polon Math, 1993, 58: 319
29 Wu J Y. A parametrized geometric finiteness theorem. Indiana Univ Math J, 1996, 45(2): 511–528
https://doi.org/10.1512/iumj.1996.45.1130
30 Xu S C. Stability theorems on almost submetries. Ph D Thesis. Beijing: Capital Normal Univ, 2010
31 Xu S C. Local estimate on convexity radius and decay of injectivity radius in a Riemannian manifold. Commun Contemp Math, July, 2017
https://doi.org/10.1142/S0219199717500602
[1] Xiaochun RONG, Shicheng XU. Stability of almost submetries[J]. Front Math Chin, 2011, 6(1): 137-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed