Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2011, Vol. 6 Issue (1) : 137-154    https://doi.org/10.1007/s11464-010-0076-7
RESEARCH ARTICLE
Stability of almost submetries
Xiaochun RONG1,2, Shicheng XU2()
1. Mathematics Department, Rutgers University, New Brunswick, NJ 08903, USA; 2. School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
 Download: PDF(266 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we consider a triple of Gromov-Hausdorff convergence: AidGHA, BidGHB and maps fi : AiBi converge to a map f : AB, where Ai are compact Alexandrov n-spaces and Bi are compact Riemannian m-manifolds such that the curvature, diameter and volume are suitably bounded (non-collapsing). When f is a submetry, we give a necessary and sufficient condition for the sequence to be stable, that is, for i large, there are homeomorphisms, Ψi : AiA, Φi : BiB such that f ? Ψi = Φi ? fi. When f is an ?-submetry with ?>0, we obtain a sufficient condition for the stability in the case that Ai are Riemannian manifolds. Our results generalize the stability/finiteness results on fiber bundles by Riemannian submersions and by submetries.

Keywords Gromov-Hausdorff convergence      Alexandrov space      stability      fiber bundle      (almost) submetry     
Corresponding Author(s): XU Shicheng,Email:shichengxu@gmail.com   
Issue Date: 01 February 2011
 Cite this article:   
Xiaochun RONG,Shicheng XU. Stability of almost submetries[J]. Front Math Chin, 2011, 6(1): 137-154.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-010-0076-7
https://academic.hep.com.cn/fmc/EN/Y2011/V6/I1/137
1 Berestovskii V N, Guijarro L. A metric characterization of Riemannian submersions. Ann Global Anal Geom, 2000, 18(6): 577-588
doi: 10.1023/A:1006683922481
2 Burago Y, Gromov M, Perel’man G. A.D. Alexandrov spaces with curvature bounded below. Uspekhi Mat Nauk, 1992, 47: 3-51
3 Cheeger J. Finiteness theorems for Riemannian manifolds. Amer J Math, 1970, 92: 61-75
doi: 10.2307/2373498
4 Cheeger J, Fukaya K, Gromov M. Nilpotent structures and invariant metrics on collapsed manifolds. J Amer Math Soc, 1992, 5: 327-372
5 Fukaya K. Hausdorff convergence of Riemannian manifolds and its applications. In: Recent Topics in Differential and Analytic Geometry. Adv Stud Pure Math, 18-I. Boston: Academic Press, 1990, 143-238
6 Green R E, Wu H. Lipschitz convergence of Riemannian manifolds. Pacific J Math, 1988, 131: 119-141
7 Gromov M, Lafontaine J, Pansu P. Structures metriques pour les varietes riemannienes. Paris: CedicFernand, 1981
8 Grove K, Petersen P. A radius sphere theorem. Invent Math, 1993, 112: 577-583
doi: 10.1007/BF01232447
9 Kapovitch V. Perelman’s stability theorem. In: Surveys in Differential Geometry, XI. Somerville: Int Press, 2007, 103-136
10 Perel’man G. Alexandrov spaces with curvatures bounded from below II. Preprint , 1991
11 Perel’man G. Elements of Morse theory on Aleksandrov spaces. St Petersburg Math J , 1993, 5: 205-213
12 Peters S. Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian manifolds. J Reine Angew Math, 1984, 349: 77-82
doi: 10.1515/crll.1984.349.77
13 Petersen P. Riemannian Geometry. Grad Texts in Math, Vol 171. Berlin: Springer- Verlag, 2006
14 Petrunin A. Semiconcave functions in Alexandrov’s geometry. In: Cheeger J, Grove K, eds. Surveys in Differential Geometry, Vol XI. Somerville: Int Press, 2007, 137-202
15 Rong X. Convergence and collapsing theorems in Riemannian geometry. In: Ji L Z, Li P, Schoen R, Simon L, eds. Handbook of Geometric Analysis, Vol II. Beijing-Boston: Higher Education Press and International Press, 2010, 193-298
16 Tapp K. Bounded Riemannian submersions. Indiana Univ Math J, 2000, 49(2): 637-654
doi: 10.1512/iumj.2000.49.1705
17 Tapp K. Finiteness theorems for submersions and souls. Proc Amer Math Soc, 2002, 130(6): 1809-1817
doi: 10.1090/S0002-9939-01-06244-X
18 Walczak P. A finiteness theorem for Riemannian submersions. Ann Polon Math, 1992, 57: 283-290
19 Walczak P. Erratum to the paper A finiteness theorem for Riemannian submersions. Ann Polon Math, 1993, 58: 319
20 Wu J Y. A parametrized geometric finiteness theorem. Indiana Univ Math J, 1996, 45(2): 511-528
doi: 10.1512/iumj.1996.45.1130
21 Yamaguchi T. Collapsing and pinching under a lower curvature bound. Ann of Math, 1991, 133: 317-357
doi: 10.2307/2944340
22 Yamaguchi T. A convergence theorem in the geometry of Alexandrov spaces. Actes de la Table Ronde de Geometrie Differential (Luminy, 1992), Semin Congr, 1. 1996, 601-642
[1] Ze LI. Asymptotic stability of solitons to 1D nonlinear Schrödinger equations in subcritical case[J]. Front. Math. China, 2020, 15(5): 923-957.
[2] Hongzhi HUANG. Fibrations and stability for compact group actions on manifolds with local bounded Ricci covering geometry[J]. Front. Math. China, 2020, 15(1): 69-89.
[3] Guangqiang LAN, Fang XIA. General decay asymptotic stability of neutral stochastic differential delayed equations with Markov switching[J]. Front. Math. China, 2019, 14(4): 793-818.
[4] Xueping LI. Lipschitz Gromov-Hausdorff approximations to two-dimensional closed piecewise flat Alexandrov spaces[J]. Front. Math. China, 2019, 14(2): 349-380.
[5] Liping XU, Jiaowan LUO. Global attractiveness and exponential decay of neutral stochastic functional differential equations driven by fBm with Hurst parameter less than 1/2[J]. Front. Math. China, 2018, 13(6): 1469-1487.
[6] Xiang LI, Shicheng XU. A parametrized compactness theorem under bounded Ricci curvature[J]. Front. Math. China, 2018, 13(1): 67-85.
[7] Zhi LI, Litan YAN, Xianghui ZHOU. Global attracting sets and stability of neutral stochastic functional differential equations driven by Rosenblatt process[J]. Front. Math. China, 2018, 13(1): 87-105.
[8] Fernando GALAZ-GARCÍA. A glance at three-dimensional Alexandrov spaces[J]. Front. Math. China, 2016, 11(5): 1189-1206.
[9] Zhiqiang ZHOU,Jingtang MA. Lattice Boltzmann methods for solving partial differential equations of exotic option pricing[J]. Front. Math. China, 2016, 11(1): 237-254.
[10] Gengen ZHANG,Aiguo XIAO. Exact and numerical stability analysis of reaction-diffusion equations with distributed delays[J]. Front. Math. China, 2016, 11(1): 189-205.
[11] Junjun LIAO,Xiangjun WANG. Stability of stochastic differential equation with linear fractal noise[J]. Front. Math. China, 2014, 9(3): 495-507.
[12] Yusheng WANG,Zhongyang SUN. Radius of locally convex subsets in Alexandrov spaces with curvature≥1 and radius>π/2[J]. Front. Math. China, 2014, 9(2): 417-423.
[13] Weichao GUO,Jiecheng CHEN. Stability of nonlinear Schrödinger equations on modulation spaces[J]. Front. Math. China, 2014, 9(2): 275-301.
[14] Pengzhan HUANG, Yinnian HE, Xinlong FENG. Convergence and stability of two-level penalty mixed finite element method for stationary Navier-Stokes equations[J]. Front Math Chin, 2013, 8(4): 837-854.
[15] Jianguo CAO, Bo DAI, Jiaqiang MEI. A quadrangle comparison theorem and its application to soul theory for Alexandrov spaces[J]. Front Math Chin, 2011, 6(1): 35-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed