Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (2) : 367-398    https://doi.org/10.1007/s11464-018-0684-1
RESEARCH ARTICLE
An isometrical CPn-theorem
Xiaole SU1, Hongwei SUN2, Yusheng WANG1()
1. School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems (Beijing Normal University), Ministry of Education, Beijing 100875, China
2. School of Mathematical Sciences, Capital Normal University, Beijing 100037, China
 Download: PDF(357 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let Mn(n3) be a complete Riemannian manifold with sec?M1, and let Mini(i=1,2) be two complete totally geodesic submanifolds in M. We prove that if n1 + n2 = n − 2 and if the distance |M1M2|π/2, then Mi is isometric to Sni/?h,?Pni/2/?2, or ?Pni/2/?2 with the canonical metric when ni>0, and thus, M is isometric to Sn/?h,?Pn/2, or ?Pn/2/?2 except possibly when n = 3 and M1 (or M2) isoS1/?h with h2 or n = 4 and M1 (or M2) iso?P2.

Keywords Rigidity      positive sectional curvature      totally geodesic submanifolds     
Corresponding Author(s): Yusheng WANG   
Issue Date: 28 March 2018
 Cite this article:   
Xiaole SU,Hongwei SUN,Yusheng WANG. An isometrical CPn-theorem[J]. Front. Math. China, 2018, 13(2): 367-398.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-018-0684-1
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I2/367
1 Besse A L. Manifolds all of whose Geodesics are Closed. Ergeb Math Grenzgeb, Vol 93. Berlin: Springer, 1978
https://doi.org/10.1007/978-3-642-61876-5
2 Burago Y, Gromov M, Perel' man G. A. D. Alexandrov spaces with curvature bounded below. Uspekhi Mat Nauk, 1992, 47(2): 3–51
3 Cheeger J, Ebin D G. Comparison Theorems in Riemannian Geometry. North-Holland Math Library, Vol 9. Amsterdam: North-Holland Publishing Company, 1975
4 Frankel T. Manifolds of positive curvature. Pacific J Math, 1961, 11: 165–174
https://doi.org/10.2140/pjm.1961.11.165
5 Gromoll D, Grove K. A generalization of Berger’s rigidity theorem for positively curved manifolds. Ann Sci Éc Norm Supér, 1987, 20(2): 227–239
https://doi.org/10.24033/asens.1530
6 Gromoll D, Grove K. The low-dimensional metric foliations of Euclidean spheres. J Differential Geom, 1988, 28: 143–156
https://doi.org/10.4310/jdg/1214442164
7 Grove K, Markvorsen S. New extremal problems for the Riemannian recognition program via Alexandrov geometry. J Amer Math Soc, 1995, 8(1): 1–28
https://doi.org/10.1090/S0894-0347-1995-1276824-4
8 Grove K, Shiohama K. A generalized sphere theorem. Ann of Math, 1977, 106: 201–211
https://doi.org/10.2307/1971164
9 Peterson P. Riemannian Geometry. Grad Texts in Math, Vol 171. Berlin: Springer-Verlag, 1998
https://doi.org/10.1007/978-1-4757-6434-5
10 Rong X C, Wang Y S. Finite quotient of join in Alexandrov geometry. ArXiv: 1609.07747v1
11 Sady R H.Free involutions on complex projective spaces. Michigan Math J, 1977, 24: 51–64
https://doi.org/10.1307/mmj/1029001820
12 Su X L, Sun H W, Wang Y S. Generalized packing radius theorems of Alexandrov spaces with curvature≥1. Commun Contemp Math, 2017, 19(3): 1650049 (18 pp)
13 Sun Z Y, Wang Y S. On the radius of locally convex subsets in Alexandrov spaces with curvature≥1 and radius>π/2. Front Math China, 2014, 9(2): 417–423
https://doi.org/10.1007/s11464-013-0341-7
14 Wilhelm F. The radius rigidity theorem for manifolds of positive curvature. J Differential Geom, 1996, 44: 634–665
https://doi.org/10.4310/jdg/1214459225
15 Wilking B. Index parity of closed geodesics and rigidity of Hopf fibrations. Invent Math, 2001, 144: 281–295
https://doi.org/10.1007/PL00005801
16 Wilking B. Torus actions on manifolds of positive sectional curvature. Acta Math, 2003, 191: 259–297
https://doi.org/10.1007/BF02392966
17 Yamaguchi T. Collapsing 4-manifolds under a lower curvature bound. arXiv: 1205.0323
[1] Anand DESSAI. Torus actions, fixed-point formulas, elliptic genera and positive curvature[J]. Front. Math. China, 2016, 11(5): 1151-1187.
[2] Manuel AMANN. Positive curvature, symmetry, and topology[J]. Front. Math. China, 2016, 11(5): 1099-1122.
[3] Qifeng BAI,Fang LI. Classification of Bott towers by matrix[J]. Front. Math. China, 2016, 11(2): 255-268.
[4] LIU Zhangjie. Scalar curvature of a class of minimal submanifolds in rank 1 symmetric spaces[J]. Front. Math. China, 2007, 2(3): 417-438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed