Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (3) : 619-632    https://doi.org/10.1007/s11464-018-0700-5
RESEARCH ARTICLE
Integral-type functionals of first hitting times for continuous-time Markov chains
Yuanyuan LIU1(), Yanhong SONG2
1. School of Mathematics and Statistics, Central South University, Changsha 410083, China
2. School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China
 Download: PDF(174 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate integral-type functionals of the first hitting times for continuous-time Markov chains. Recursive formulas and drift conditions for calculating or bounding integral-type functionals are obtained. The connection between the subexponential integral-type functionals and the subexponential ergodicity is established. Moreover, these results are applied to the birth-death processes. Polynomial integral-type functionals and polynomial ergodicity are studied, and a sufficient criterion for a central limit theorem is also presented.

Keywords Integral-type functional      continuous-time Markov chain (CTMC)      subexponential ergodicity      birth-death process      central limit theorem (CLT)     
Corresponding Author(s): Yuanyuan LIU   
Issue Date: 11 June 2018
 Cite this article:   
Yuanyuan LIU,Yanhong SONG. Integral-type functionals of first hitting times for continuous-time Markov chains[J]. Front. Math. China, 2018, 13(3): 619-632.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-018-0700-5
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I3/619
1 Anderson W J. Continuous-Time Markov Chains: An Applications-Oriented Approach.New York: Springer, 1991
https://doi.org/10.1007/978-1-4612-3038-0
2 Bladt M. The variance constant for the actual waiting time of the PH/PH/1 queue. Ann Appl Probab, 1996, 6(3): 766–777
https://doi.org/10.1214/aoap/1034968227
3 Chen M F. From Markov Chains to Non-Equilibrium Particle Systems.2nd ed. Singapore: Word Scientific, 2004
https://doi.org/10.1142/5513
4 Chen M F, Wang Y Z. Algebraic convergence of Markov chains. Ann Appl Probab, 2003, 13(2): 604–627
https://doi.org/10.1214/aoap/1050689596
5 Douc R, Fort G, Guillin A. Subgeometric rates of convergence of f-ergodic strong Markov processes. Stoch Proc Appl, 2009, 119(3): 897–923
https://doi.org/10.1016/j.spa.2008.03.007
6 Fort G, Roberts G O. Subgeometric ergodicity of strong Markov processes. Ann Appl Probab, 2005, 15(2): 1565–1589
https://doi.org/10.1214/105051605000000115
7 Glynn P W, Whitt W. Necessary conditions in limit theorems for cumulative processes. Stochastic Process Appl, 2002, 98(2): 199–209
https://doi.org/10.1016/S0304-4149(01)00146-6
8 Hou Z T, Guo Q F. Homogeneous Denumerable Markov Processes.New York: Springer, 1988
9 Hou Z T, Liu Y Y, Zhang H J. Subgeometric rates of convergence for a class of continuous-time Markov processes. J Appl Probab, 2005, 42(3): 698–712
https://doi.org/10.1239/jap/1127322021
10 Jiang S X, Liu Y Y, Yao S. Poisson’s equation for discrete-time single-birth processes. Statist Probab Lett, 2014, 85(2): 78–83
https://doi.org/10.1016/j.spl.2013.11.008
11 Liu Y Y. Additive functionals for discrete-time Markov chains with applications to birth-death processes. J Appl Probab, 2011, 48(4): 925–937
https://doi.org/10.1239/jap/1324046010
12 Liu Y Y, Wang P F, Xie Y M. Deviation matrix and asymptotic variance for GI/M/1-type Markov chains. Front Math China, 2014, 9(4): 863–880
https://doi.org/10.1007/s11464-014-0401-7
13 Liu Y Y, Wang P F, Zhao Y Q. The variance constant for continuous-time level dependent quasi-birth-and-death processes. Stoch Models, 2018, 34(1): 25–44
https://doi.org/10.1080/15326349.2017.1376285
14 Liu Y Y, Zhang H J, Zhao Y Q. Subgeometric ergodicity for continuous-time Markov chains. J Math Anal Appl, 2010, 368(1): 178–189
https://doi.org/10.1016/j.jmaa.2010.03.019
15 Liu Y Y, Zhang Y H. Central limit theorems for ergodic continuous-time Markov chains with applications to single birth processes. Front Math China, 2015, 10(4): 933–947
https://doi.org/10.1007/s11464-015-0488-5
16 Mao Y H. Ergodic degrees for continuous-time Markov chains. Sci China Ser A, 2004, 47(2): 161–174
https://doi.org/10.1360/02ys0306
17 Mey S P, Tweedie R L. Markov Chains and Stochastic Stability.2nd ed. Cambridge: Cambridge Univ Press, 2009
18 Pollett P K, Stefanov V T. Path integrals for continuous-time Markov chains. J Appl Probab, 2002, 39(4): 901–904
https://doi.org/10.1239/jap/1037816029
19 Stefanov V T, Wang S. A note on integrals for birth-death processes. Math Biosci, 2000, 168(2): 161–165
https://doi.org/10.1016/S0025-5564(00)00046-8
20 Whitt W. Asymptotic formulas for Markov processes with applications to simulation. Oper Res, 1992, 40(2): 279–291
https://doi.org/10.1287/opre.40.2.279
21 Zhang Y H. A note on exponential ergodicity and ℓ-ergodicity of single birth processes. J Beijing Normal Univ, 2010, 46(1): 1–5 (in Chinese)
[1] Jing WANG, Yuhui ZHANG. Moments of integral-type downward functionals for single death processes[J]. Front. Math. China, 2020, 15(4): 749-768.
[2] Yuhui ZHANG. Moments of first hitting times for birth-death processes on trees[J]. Front. Math. China, 2019, 14(4): 833-854.
[3] Yuanyuan LIU,Yuhui ZHANG. Central limit theorems for ergodic continuous-time Markov chains with applications to single birth processes[J]. Front. Math. China, 2015, 10(4): 933-947.
[4] Yutao MA,Yonghua MAO. New point view of spectral gap in functional spaces for birth-death processes[J]. Front. Math. China, 2014, 9(3): 523-535.
[5] Mu-Fa CHEN. Lower bounds of principal eigenvalue in dimension one[J]. Front Math Chin, 2012, 7(4): 645-668.
[6] Jian WANG. First eigenvalue of birth-death processes with killing[J]. Front Math Chin, 2012, 7(3): 561-572.
[7] Mu-Fa CHEN, . Speed of stability for birth-death processes[J]. Front. Math. China, 2010, 5(3): 379-515.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed