Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (6) : 1267-1311    https://doi.org/10.1007/s11464-018-0716-x
RESEARCH ARTICLE
Hermitizable, isospectral complex matrices or differential operators
Mu-Fa CHEN()
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems (Beijing Normal University), Ministry of Education, Beijing 100875, China
 Download: PDF(514 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The main purpose of the paper is looking for a larger class of matrices which have real spectrum. The first well-known class having this property is the symmetric one, then is the Hermite one. This paper introduces a new class, called Hermitizable matrices. The closely related isospectral problem, not only for matrices but also for differential operators is also studied. The paper provides a way to describe the discrete spectrum, at least for tridiagonal matrices or one-dimensional differential operators. Especially, an unexpected result in the paper says that each Hermitizable matrix is isospectral to a birth–death type matrix (having positive sub-diagonal elements, in the irreducible case for instance). Besides, new efficient algorithms are proposed for computing the maximal eigenpairs of these class of matrices.

Keywords Real spectrum      symmetrizable      Hermitizable      isospectral      matrix      differential operator     
Corresponding Author(s): Mu-Fa CHEN   
Issue Date: 02 January 2019
 Cite this article:   
Mu-Fa CHEN. Hermitizable, isospectral complex matrices or differential operators[J]. Front. Math. China, 2018, 13(6): 1267-1311.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-018-0716-x
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I6/1267
1 Yu MBerezanskii, V GSamoilenko. On the self-adjointness of differential operators with finitely or infinitely many variables, and evolution equations. Russian Math Surveys, 1981, 36(5): 1–62
https://doi.org/10.1070/RM1981v036n05ABEH003029
2 A GBrustentsev. (2004). Selfadjointness of elliptic differential operators in L2(G), and correction potentials. Trans Moscow Math Soc, 2004, 65: 31–61
https://doi.org/10.1090/S0077-1554-04-00144-X
3 Z HCao. Eigenvalue Problem of Matrices. Shanghai: Shanghai Press of Sci & Tech, 1983 (in Chinese)
4 M FChen. Exponential L2-convergence and L2-spectral gap for Markov processes. Acta Math Sin, New Ser, 1991, 7(1): 19–37
5 M FChen. From Markov Chains to Non-Equilibrium Particle Systems. 2nd ed. Singapore: World Scientific, 2004 (1st ed, 1992)
https://doi.org/10.1142/5513
6 M FChen. Eigenvalues, Inequalities, and Ergodic Theory. London: Springer, 2005
7 M FChen. Speed of stability for birth–death processes. Front Math China, 2010, 5(3): 379–515
https://doi.org/10.1007/s11464-010-0068-7
8 M FChen. Criteria for discrete spectrum of 1D operators. Commun Math Stat, 2014, 2: 279–309
https://doi.org/10.1007/s40304-014-0041-y
9 M FChen. Efficient initials for computing the maximal eigenpair. Front Math China, 2016, 11(6): 1379–1418 See also volume 4 in the middle of the author’s homepage: A package based on the paper is available on CRAN (by X. J. Mao): A MatLab package is also available, see the author’s homepage above
10 M FChen. The charming leading eigenpair. Adv Math (China), 2017, 46(4): 281–297
11 M FChen. Global algorithms for maximal eigenpair. Front Math China, 2017, 12(5): 1023–1043
https://doi.org/10.1007/s11464-017-0658-8
12 M FChen. Trilogy on computing maximal eigenpair. In: Yue W, Li Q L, Jin S, Ma Z, eds. Queueing Theory and Network Applications. QTNA 2017. Lecture Notes in Comput Sci, Vol 10591. Cham: Springer, 2017, 312–329
https://doi.org/10.1007/978-3-319-68520-5_19
13 M FChen. Mathematical topics motivated from statistical physics (I). Sci Sin Math, 2018 (to appear, in Chinese)
14 M FChen. Mathematical topics motivated from statistical physics (II). Sci Sin Math, 2018 (to appear, in Chinese)
15 M FChen, XZhang. Isospectral operators. Commun Math Stat, 2014, 2: 17–32
https://doi.org/10.1007/s40304-014-0028-8
16 A VFrolov, et al.. Thomas algorithm, pointwise version.
17 Z THou, M FChen. Markov Processes and field theory (Abstract). Kuoxue Tongbao, 1980, 25(10): 807–811 (Complete version appeared in [23; pages 194–242])
18 TKato. Remarks on the selfadjointness and related problems for differential operators. In: Knowles I W, Lewis R T, eds. Spectral Theory of Differential Operators. Amsterdam: North Holland, 1981, 253–266
19 A NKolmogorov. Zur Theorie der Markoffschen Ketten. Math Ann, 1936, 112: 155–160 (English translation: On the theory of Markov ehains. Article 21 in Selected Works of A. N. Kolmogorov, Vol II: Probability Theory and Mathematical Statistics, 182–187, edited by Shiryayev A N. Moscow: Nauka, 1986. Translated by Undquist G. Springer 1992)
20 A NKolmogorov. Zur Umkehrbarkeit der statistischen Naturgesetze. Math Ann, 1937, 113: 766–772 (English translation: On the reversibility of the statistical laws of nature. Article 24 in Selected Works of A. N. Kolmogorov, Vol II: 209–215)
21 GLudyk. Quantum Mechanics in Matrix Form. Undergraduate Lecture Notes in Physics. Berlin: Springer, 2018
https://doi.org/10.1007/978-3-319-26366-3
22 ANino, CMunoz-Caro, SReyes. A concurrent object-oriented approach to the eigenproblem treatment in shared memory multicore environments. In: Lecture Notes in Comput Sci, Vol 6782. Cham: Springer, 2011, 630–642
23 MQian, Z THou, eds. Reversible Markov Processes. Changsha: Hunan Sci & Tech Press, 1979 (in Chinese)
24 ESchrödinger. Über die Umkehrung der Naturgesetze. Sitzungsber Preuss, Akad Wiss, Phys-Math KI, 12 März, 1931, 144–153
25 OShukuzawa, TSuzuki, IYokota. Real tridiagonalization of Hermitian matrices by modified Householder transformation. Proc Japan Acad Ser A, 1996, 72: 102–103
https://doi.org/10.3792/pjaa.72.102
26 TTang, JYang. Computing the maximal eigenpairs of large size tridiagonal matrices with O(l)number of iterations. Numer Math Theory Methods Appl, 2018, 11(4): 877–894
27 R SVarga. Geršgorin and His Circles. Berlin: Springer, 2004
https://doi.org/10.1007/978-3-642-17798-9
[1] Saeed RAHMATI, Mohamed A. TAWHID. On intervals and sets of hypermatrices (tensors)[J]. Front. Math. China, 2020, 15(6): 1175-1188.
[2] Mu-Fa CHEN, Jin-Yu LI. Hermitizable, isospectral complex second-order differential operators[J]. Front. Math. China, 2020, 15(5): 867-889.
[3] Mu-Fa CHEN. On spectrum of Hermitizable tridiagonal matrices[J]. Front. Math. China, 2020, 15(2): 285-303.
[4] Yanyan WANG. Determination of generalized exact boundary synchronization matrix for a coupled system of wave equations[J]. Front. Math. China, 2019, 14(6): 1339-1352.
[5] Xin LI, Jiming GUO, Zhiwen WANG. Minimal least eigenvalue of connected graphs of order n and size m = n + k (5≤k≤8)[J]. Front. Math. China, 2019, 14(6): 1213-1230.
[6] Kinkar Chandra DAS, Huiqiu LIN, Jiming GUO. Distance signless Laplacian eigenvalues of graphs[J]. Front. Math. China, 2019, 14(4): 693-713.
[7] Mu-Fa CHEN, Yue-Shuang LI. Development of powerful algorithm for maximal eigenpair[J]. Front. Math. China, 2019, 14(3): 493-519.
[8] Tai Keun KWAK, Yang LEE, Young Joo SEO. Some remarks on one-sided regularity[J]. Front. Math. China, 2018, 13(4): 833-847.
[9] Suxin WANG, Yiming JIANG. Asymptotic analysis of a kernel estimator for parabolic stochastic partial differential equations driven by fractional noises[J]. Front. Math. China, 2018, 13(1): 187-201.
[10] Zhihe LIANG. Super (a, d)-edge-antimagic total labelings of complete bipartite graphs[J]. Front. Math. China, 2018, 13(1): 129-146.
[11] Jie WEN, Qin NI, Wenhuan ZHU. Rank-r decomposition of symmetric tensors[J]. Front. Math. China, 2017, 12(6): 1339-1355.
[12] Mu-Fa CHEN. Efficient initials for computing maximal eigenpair[J]. Front. Math. China, 2016, 11(6): 1379-1418.
[13] M. Tamer KOŞAN,Yiqiang ZHOU. On weakly nil-clean rings[J]. Front. Math. China, 2016, 11(4): 949-955.
[14] Chan Yong HONG,Nam Kyun KIM,Tai Keun KWAK,Yang LEE. On extensions of matrix rings with skew Hochschild 2-cocycles[J]. Front. Math. China, 2016, 11(4): 869-900.
[15] Chongguang CAO,Yingchun WANG,Yuqiu SHENG. Group inverses for some 2 × 2 block matrices over rings[J]. Front. Math. China, 2016, 11(3): 521-538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed