Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (5) : 1099-1120    https://doi.org/10.1007/s11464-018-0720-1
RESEARCH ARTICLE
Variational principle and zero temperature limits of asymptotically (sub)-additive projection pressure
Qiuhong WANG, Yun ZHAO()
School of Mathematical Sciences, Soochow University, Suzhou 215006, China
 Download: PDF(234 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let {Si}i=1l be an iterated function system (IFS) on ?d with an attractor K. Let (Σ, σ) denote the one-sided full shift over the finite alphabet {1, 2, . . . , l}, and let π: Σ → K be the coding map. Given an asymptotically (sub)-additive sequence of continuous functions F={fn}n1, we define the asymptotically additive projection pressure Pπ(F) and show the variational principle for Pπ(F) under certain affine IFS. We also obtain variational principle for the asymptotically sub-additive projection pressure if the IFS satisfies asymptotically weak separation condition (AWSC). Furthermore, when the IFS satisfies AWSC, we investigate the zero temperature limits of the asymptotically sub-additive projection pressure Pπ(βF) with positive parameter β.

Keywords Projection pressure      asymptotically (sub)-additive potentials      variational principle      zero temperature limits     
Corresponding Author(s): Yun ZHAO   
Issue Date: 29 October 2018
 Cite this article:   
Qiuhong WANG,Yun ZHAO. Variational principle and zero temperature limits of asymptotically (sub)-additive projection pressure[J]. Front. Math. China, 2018, 13(5): 1099-1120.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-018-0720-1
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I5/1099
1 Ban J, Cao Y, Hu H. The dimensions of a non-conformal repeller and an average conformal repeller. Trans Amer Math Soc, 2010, 362: 727–751
https://doi.org/10.1090/S0002-9947-09-04922-8
2 Baraviera A, Leplaideur R, Lopes A. Ergodic Optimization, Zero Temperature Limits and the Max-Plus Algebra. 29◦ Coloquio Brasileiro e Matematica. Rio de Janeiro: IMPA, 2013
3 Barreira L. A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergodic Theory Dynam Systems, 1996, 16: 871–927
https://doi.org/10.1017/S0143385700010117
4 Barreira L. Nonadditive thermodynamic formalism: equilibrium and Gibbs measures. Discrete Contin Dyn Syst, 2006, 16: 279–305
https://doi.org/10.3934/dcds.2006.16.279
5 Bowen R. Topological entropy for noncompact sets. Trans Amer Math Soc, 1973, 184: 125–136
https://doi.org/10.1090/S0002-9947-1973-0338317-X
6 Bowen R. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math, Vol 470. Berlin: Springer-Verlag, 1975
https://doi.org/10.1007/BFb0081279
7 Bowen R. Hausdorff dimension of quasicircles. Inst Hautes Études Sci Publ Math, 1979, 50: 11–25
https://doi.org/10.1007/BF02684767
8 Cao Y, Feng D, Huang W. The thermodynamic formalism for sub-additive potentials. Discrete Contin Dyn Syst, 2008, 20: 639–657
9 Catsigeras E, Zhao Y. Observable optimal state points of sub-additive potentials. Discrete Contin Dyn Syst, 2013, 33(4): 1375–1388
https://doi.org/10.3934/dcds.2013.33.1375
10 Chen B, Ding B, Cao Y. The local variational principle of topological pressure for subadditive potentials. Nonlinear Anal, 2010, 73: 3525–3536
https://doi.org/10.1016/j.na.2010.07.025
11 Chung N. Topological pressure and the variational principle for actions of sofic groups. Ergodic Theory Dynam Systems, 2013, 33(5): 1363–1390
https://doi.org/10.1017/S0143385712000429
12 Dooley A, Zhang G. Local Entropy Theory of a Random Dynamical System. Mem Amer Math Soc, Vol 233, No 1099. Providence: Amer Math Soc, 2015
13 Downarowicz T, Zhang G. Modeling potential as fiber entropy and pressure as entropy. Ergodic Theory Dynam Systems, 2015, 35(4): 1165–1186
https://doi.org/10.1017/etds.2013.95
14 Falconer K. A subadditive thermodynamic formalism for mixing repellers. J Phys A, 1988, 21: 737–742
https://doi.org/10.1088/0305-4470/21/14/005
15 Feng D. The variational principle for products of non-negative matrices. Nonlinearity, 2004, 17: 447–457
https://doi.org/10.1088/0951-7715/17/2/004
16 Feng D, Hu H. Dimension theory of iterated function systems. Comm Pure Appl Math, 2009, 62: 1435–1500
https://doi.org/10.1002/cpa.20276
17 Feng D, Huang W. Lyapunov spectrum of asymptotically sub-additive potentials. Comm Math Phys, 2010, 297: 1–43
https://doi.org/10.1007/s00220-010-1031-x
18 Huang W, Ye X,Zhang G. Local entropy theory for a countable discrete amenable group action. J Funct Anal, 2011, 261(4): 1028–1082
https://doi.org/10.1016/j.jfa.2011.04.014
19 Huang W, Yi Y. A local variational principle of pressure and its applications to equilibrium states. Israel J Math, 2007, 161: 29–74
https://doi.org/10.1007/s11856-007-0071-1
20 Keller G. Equilibrium States in Ergodic Theory. London Math Soc Stud Texts, Vol 42. Cambridge: Cambridge Univ Press, 1998
https://doi.org/10.1017/CBO9781107359987
21 Kerr D, Li H. Entropy and the variational principle for actions of sofic groups. Invent Math, 2011, 186(3): 501–558
https://doi.org/10.1007/s00222-011-0324-9
22 Kingman J. Subadditive ergodic theory. Ann Probab, 1973, 1: 883–909
https://doi.org/10.1214/aop/1176996798
23 Ma X, Chen E. Variational principles for relative local pressure with subadditive potentials. J Math Phys, 2013, 54(3): 465–478
https://doi.org/10.1063/1.4794086
24 Manning A, McCluskey H. Hausdorff dimension for horseshoes. Ergodic Theory Dynam Systems, 1983, 3: 251–260
25 Mummert A. The thermodynamic formalism for almost-additive sequences. Discrete Contin Dyn Syst, 2006, 16: 435–454
https://doi.org/10.3934/dcds.2006.16.435
26 Ollagnier J M. Ergodic Theory and Statistical Mechanics. Lecture Notes in Math, Vol 1115. Berlin: Springer, 1985
https://doi.org/10.1007/BFb0101575
27 Ollagnier J M, Pinchon D. The variational principle. StudiaMath, 1982, 72(2): 151–159
https://doi.org/10.4064/sm-72-2-151-159
28 Pein Y, Pitskel’ B S. Topological pressure and the variational principle for noncompact sets. Funct Anal Appl, 1984, 18: 307–318
https://doi.org/10.1007/BF01083692
29 Pesin Ya B. Dimension Theory in Dynamical Systems: Contemporary Views and Applications. Chicago Lectures in Mathematics. Chicago: Univ of Chicago Press, 1997
https://doi.org/10.7208/chicago/9780226662237.001.0001
30 Ruelle D. Repellers for real analytic maps. Ergodic Theory Dynam Systems, 1982, 2: 99–107
https://doi.org/10.1017/S0143385700009603
31 Stepin A M, Tagi-Zade A T. Variational characterization of topological pressure of the amenable groups of transformations. Dokl Akad Nauk SSSR, 1980, 254(3): 545–549 (in Russian); Sov Math Dokl, 1980, 22(2): 405–409
32 Tang X, Cheng W, Zhao Y. Variational principle for topological pressures on subsets. J Math Anal Appl, 2015, 424: 1272–1285
https://doi.org/10.1016/j.jmaa.2014.11.066
33 Tempelman A A. Specific characteristics and variational principle for homogeneous random fields. Z Wahrscheinlichkeit-stheor Verw Geb, 1984, 65(3): 341–365
https://doi.org/10.1007/BF00533741
34 Tempelman A A. Ergodic Theorems for Group Actions: Informational and Thermodynamical Aspects. Math Appl, Vol 78. Dordrecht: Kluwer Academic, 1992
https://doi.org/10.1007/978-94-017-1460-0
35 Walters P. An Introduction to Ergodic Theory. New York: Springer-Verlag, 1982
https://doi.org/10.1007/978-1-4612-5775-2
36 Wang C, Chen E. Projection pressure and Bowen’s equation for a class of self-similar fractals with overlap structure. Sci China Math, 2012, 55(7): 1387–1394
https://doi.org/10.1007/s11425-012-4412-0
37 Wang C, Chen E. The projection pressure for asymptotically weak separated condition and Bowen’s equation. Discrete Dyn Nat Soc, 2012, Art ID 807405 (10pp)
38 Yan K. Sub-additive and asymptotically sub-additive topological pressure for Z d- actions. J Dynam Differential Equations, 2013, 25(3): 653–678
https://doi.org/10.1007/s10884-013-9298-1
39 Yan K. Conditional entropy and fiber entropy for amenable group actions. J Differential Equations, 2015, 259(7): 3004–3031
https://doi.org/10.1016/j.jde.2015.04.013
40 Zhang G. Variational principles of pressure. Discrete Contin Dyn Syst, 2009, 24: 1409–1435
https://doi.org/10.3934/dcds.2009.24.1409
41 Zhang G. Local variational principle concerning entropy of sofic group action. J Funct Anal, 2012, 262(4): 1954–1985
https://doi.org/10.1016/j.jfa.2011.11.029
42 Zhang Y. Dynamical upper bounds for Hausdorff dimension of invariant sets. Ergodic Theory Dynam Systems, 1997, 17(3): 739–756
https://doi.org/10.1017/S0143385797085003
43 Zhao Y, Cheng W. Variational principle for conditional pressure with subadditive potential. Open Syst Inf Dyn, 2011, 18(4): 389–404
https://doi.org/10.1142/S1230161211000273
44 Zhao Y, ChengW. Coset pressure with sub-additive potentials. Stoch Dyn, 2014, 14(1): 1350012 (15pp)
45 Zhao Y, Zhang L, Cao Y. The asymptotically additive topological pressure on the irregular set for asymptotically additive potentials. Nonlinear Anal, 2011, 74: 5015–5022
https://doi.org/10.1016/j.na.2011.04.065
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed