Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2009, Vol. 4 Issue (3) : 523-562    https://doi.org/10.1007/s11464-009-0032-6
RESEARCH ARTICLE
Spreading and generalized propagating speeds of discrete KPP models in time varying environments
Wenxian SHEN()
Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA
 Download: PDF(358 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The current paper deals with spatial spreading and front propagating dynamics for spatially discrete KPP (Kolmogorov, Petrovsky and Paskunov) models in time recurrent environments, which include time periodic and almost periodic environments as special cases. The notions of spreading speed interval, generalized propagating speed interval, and traveling wave solutions are first introduced, which are proper modifications of those introduced for spatially continuous KPP models in time almost periodic environments. Among others, it is then shown that the spreading speed interval in a given direction is the minimal generalized propagating speed interval in that direction. Some important upper and lower bounds for the spreading and generalized propagating speed intervals are provided. When the environment is unique ergodic and the so called linear determinacy condition is satisfied, it is shown that the spreading speed interval in any direction is a singleton (called the spreading speed), which equals the classical spreading speed if the environment is actually periodic. Moreover, in such a case, a variational principle for the spreading speed is established and it is shown that there is a front of speed c in a given direction if and only if c is greater than or equal to the spreading speed in that direction.

Keywords Discrete KPP (Kolmogorov      Petrovsky and Paskunov) model      time varying environment      front      front solution      spreading speed interval      generalized propagating speed interval      traveling wave solution      linear determinacy      variational principle      compact flow      recurrent function     
Corresponding Author(s): SHEN Wenxian,Email:wenxish@mail.auburn.edu   
Issue Date: 05 September 2009
 Cite this article:   
Wenxian SHEN. Spreading and generalized propagating speeds of discrete KPP models in time varying environments[J]. Front Math Chin, 2009, 4(3): 523-562.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0032-6
https://academic.hep.com.cn/fmc/EN/Y2009/V4/I3/523
1 Alikakos N D, Bates P W, Chen X. Periodic traveling waves and locating oscillating patterns in multidimensional domains. Trans Amer Math Soc , 1999, 351: 2777-2805
doi: 10.1090/S0002-9947-99-02134-0
2 Aronson D G, Weinberger H F. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Goldstein J, ed. Partial Differential Equations and Related Topics. Lecture Notes in Math, Vol 466 . New York: Springer-Verlag, 1975, 5-49
doi: 10.1007/BFb0070595
3 Aronson D G, Weinberger H F. Multidimensional nonlinear diffusions arising in population genetics. Adv Math , 1978, 30: 33-76
doi: 10.1016/0001-8708(78)90130-5
4 Berestycki H, Hamel F, Nadirashili N. The speed of propagation for KPP type problems, I—Periodic framework. J Eur Math Soc , 2005, 7: 172-213
5 Berestycki H, Hamel F, Roques L. Analysis of periodically fragmented environment model: II—Biological invasions and pulsating traveling fronts. J Math Pures Appl , 2005, 84: 1101-1146
doi: 10.1016/j.matpur.2004.10.006
6 Chen X, Guo J-S. Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations. J Diff Eq , 2002, 184(2): 549-569
doi: 10.1006/jdeq.2001.4153
7 Chen X, Guo J-S. Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math Ann , 2003, 326(1): 123-146
doi: 10.1007/s00208-003-0414-0
8 Conlon J G, Doering C R. On travelling waves for the stochastic Fisher-Kolmogorov- Petrovsky-Piscunov equation. J Stat Phys , 2005, 120(3-4): 421-477
doi: 10.1007/s10955-005-5960-2
9 Dumortier F, Popovic N, Kaper T J. The critical wave speed for the Fisher- Kolmogorov-Petrowskii-Piscounov equation with cut-off. Nonlinearity , 2007, 20(4): 855-877
doi: 10.1088/0951-7715/20/4/004
10 Fife P C, Mcleod J B. The approach of solutions of nonlinear diffusion equations to traveling front solutions. Arch Ration Mech Anal , 1977, 65: 335-361
doi: 10.1007/BF00250432
11 Fink A M. Almost Periodic Differential Equations. Lecture Notes in Mathematics, Vol 377 . Berlin/Heidelberg/New York: Springer-Verlag, 1974
12 Fisher R. The wave of advance of advantageous genes. Ann of Eugenics , 1937, 7: 335-369
13 Freidlin M, G?rtner J. On the propagation of concentration waves in periodic and random media. Soviet Math Dokl , 1979, 20: 1282-1286
14 Guo J-S, Hamel F. Front propagation for discrete periodic monostable equations. Math Ann , 2006, 335(3): 489-525
doi: 10.1007/s00208-005-0729-0
15 Heinze S, Papanicolaou G, Stevens A. A variational principle for propagation speeds in inhomogeneous media. SIAM J Appl Math , 2001, 62: 129-148
doi: 10.1137/S0036139999361148
16 Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math, Vol 840 . Berlin: Springer-Verlag, 1981
17 Hudson W, Zinner B. Existence of traveling waves for a generalized discrete Fisher’s equation. Comm Appl Nonlinear Anal , 1994, 1(3): 23-46
18 Johnson R A, Palmer K J, Sell G R. Ergodic properties of linear dynamical systems. SIAM J Math Anal , 1987, 18(1): 1-33
doi: 10.1137/0518001
19 Kametaka Y. On the nonlinear diffusion equation of Kolmogorov-Petrovskii- Piskunov type. Osaka J Math , 1976, 13: 11-66
20 Kolmogorov A, Petrowsky I, Piscunov N. A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bjul Moskovskogo Gos Univ , 1937, 1: 1-26
21 Lewis L A, Li B, Weinberger H F. Spreading speed and linear determinacy for twospecies competition models. J Math Biol , 2002, 45(3): 219-233
doi: 10.1007/s002850200144
22 Liang X, Yi Y, Zhao X-Q. Spreading speeds and traveling waves for periodic evolution systems. J Diff Eq , 2006, 231(1): 57-77
doi: 10.1016/j.jde.2006.04.010
23 Liang X, Zhao X-Q. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm Pure Appl Math , 2007, 60(1): 1-40
doi: 10.1002/cpa.20154
24 Lui R. Biological growth and spread modeled by systems of recursions. Math Biosciences , 1989, 93: 269-312
doi: 10.1016/0025-5564(89)90026-6
25 Ma S, Zou X. Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay. J Diff Eq , 2005, 217(1): 54-87
doi: 10.1016/j.jde.2005.05.004
26 Majda A J, Souganidis P E. Large scale front dynamics for turbulent reactiondiffusion equations with separated velocity scales. Nonlinearity , 1994, 7: 1-30
doi: 10.1088/0951-7715/7/1/001
27 Majda A J, Souganidis P E. Flame fronts in a turbulent combustion model with fractal velocity fields. Comm Pure and Appl Math , 1998, LI: 1337-1348
doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1337::AID-CPA4>3.0.CO;2-B
28 Mueller C, Sowers R B. Random travelling waves for the KPP equation with noise. J Funct Anal , 1995, 128(2): 439-498
doi: 10.1006/jfan.1995.1038
29 Nolen J, Rudd M, Xin J. Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds. Dynamics of PDE , 2005, 2: 1-24
30 Nolen J, Xin J. Reaction-diffusion front speeds in spatially-temporally periodic shear flows. Multiscale Model Simul , 2003, 1: 554-570
doi: 10.1137/S1540345902420234
31 Nolen J, Xin J. Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle. Discrete and Continuous Dynamical Systems , 2005, 13: 1217-1234
doi: 10.3934/dcds.2005.13.1217
32 Nolen J, Xin J. A variational principle based study of KPP minimal front speeds in random shears. Nonlinearity , 2005, 18: 1655-1675
doi: 10.1088/0951-7715/18/4/013
33 Popovic N, Kaper T J. Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction-diffusion equations. J Dynam Diff Eq , 2006, 18(1): 103-139
doi: 10.1007/s10884-005-9002-1
34 Ryzhik L, A Zlato? A. KPP pulsating front speed-up by flows. Commun Math Sci , 2007, 5(3): 575-593
35 Sattinger D H. On the stability of waves of nonlinear parabolic systems. Advances in Math , 1976, 22: 312-355
doi: 10.1016/0001-8708(76)90098-0
36 Sell G R. Topological Dynamics and Ordinary Differential Equations. New York: Van Norstand Reinhold Company , 1971
37 Shen W. Traveling waves in time almost periodic structures governed by bistable nonlinearities, I. Stability and uniqueness. J Diff Eq , 1999, 159: 1-54
doi: 10.1006/jdeq.1999.3651
38 Shen W. Traveling waves in time almost periodic structures governed by bistable nonlinearities, II. Existence. J Diff Eq , 1999, 159: 55-101
doi: 10.1006/jdeq.1999.3652
39 Shen W. Dynamical systems and traveling waves in almost periodic structures. J Diff Eq , 2001, 169: 493-548
doi: 10.1006/jdeq.2000.3906
40 Shen W. Traveling waves in diffusive random media. J Dynam Diff Eq , 2004, 16: 1011-1060
doi: 10.1007/s10884-004-7832-x
41 Shen W. Traveling waves in time dependent bistable equations. Diff and Integral Eq , 2006, 19: 241-278
42 Shigesada N, Kawasaki K. Biological Invasions: Theory and Practice. Oxford Series in Ecology and Evolution . Oxford: Oxford University Press, 1997
43 Shorrocks B, Swingland I R. Living in a Patch Environment. New York: Oxford University Press, 1990
44 Thieme H, Zhao X-Q. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J Diff Eq , 2003, 195: 430-470
doi: 10.1016/S0022-0396(03)00175-X
45 Uchiyama K. The behavior of solutions of some nonlinear diffusion equations for large time. J Math Kyoto Univ , 1978, 18: 453-508
46 Weinberger H F. Long-time behavior of a class of biology models. SIAM J Math Anal , 1982, 13: 353-396
doi: 10.1137/0513028
47 Weinberger H F. On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J Math Biol , 2002, 45: 511-548
doi: 10.1007/s00285-002-0169-3
48 Weinberger H F, Lewis M A, Li B. Analysis of linear determinacy for spread in cooperative models. J Math Biol , 2002, 45(3): 183-218
doi: 10.1007/s002850200145
49 Wu J, Zou X. Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations. J Diff Eq , 1997, 135(2): 315-357
doi: 10.1006/jdeq.1996.3232
50 Wu J, Zou X. Traveling wave fronts of reaction-diffusion systems with delays. J Dynam Diff Eq , 2001, 13: 651-687
doi: 10.1023/A:1016690424892
51 Xin J. Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity. J Dynam Diff Eq , 1991, 3(4): 541-573
doi: 10.1007/BF01049099
52 Xin J. Front propagation in heterogeneous media. SIAM Review , 2000, 42: 161-230
doi: 10.1137/S0036144599364296
53 Xin J. KPP front speeds in random shears and the parabolic Anderson problem. Methods and Applications of Analysis , 2003, 10: 191-198
54 Yi Y. Almost Automorphic and Almost Periodic Dynamics in Skew-product Semiflows, Part I. Almost Automorphy and Almost Periodicity. Memoirs of Amer Math Soc, 647 . Providence: Amer Math Soc, 1998
55 Zinner B, Harris G, Hudson W. Traveling wavefronts for the discrete Fisher’s equation. J Diff Eq , 1993, 105(1): 46-62
doi: 10.1006/jdeq.1993.1082
56 Zlato? A. Pulsating front speed-up and quenching of reaction by fast advection. Nonlinearity , 2007, 20: 2907-2921
doi: 10.1088/0951-7715/20/12/009
[1] Qiuhong WANG, Yun ZHAO. Variational principle and zero temperature limits of asymptotically (sub)-additive projection pressure[J]. Front. Math. China, 2018, 13(5): 1099-1120.
[2] Ming SONG, Zhengrong LIU, Essaid ZERRAD, Anjan BISWAS. Singular soliton solution and bifurcation analysis of Klein-Gordon equation with power law nonlinearity[J]. Front Math Chin, 2013, 8(1): 191-201.
[3] Paul TSUJI, Lexing YING. A sweeping preconditioner for Yee’s finite difference approximation of time-harmonic Maxwell’s equations[J]. Front Math Chin, 2012, 7(2): 347-363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed