Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (5) : 1063-1075    https://doi.org/10.1007/s11464-019-0795-3
RESEARCH ARTICLE
Spectral analysis of generalized Volterra equation
Junyi ZHU1, Xinxin MA1, Zhijun QIAO2()
1. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
2. School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
 Download: PDF(227 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A generalized Volterra lattice with a nonzero boundary condition is considered by virtue of the inverse scattering transform. The two-sheeted Riemann surface associated with the boundary problem is transformed into the Riemann sphere by introducing a suitable variable transformation. The associated spectral properties of the lattice in single-valued variable was discussed. The constraint condition about the nonzero boundary condition and the scattering data is found.

Keywords Volterra lattice      nonzero boundary condition      inverse scattering transform     
Corresponding Author(s): Zhijun QIAO   
Issue Date: 22 November 2019
 Cite this article:   
Junyi ZHU,Xinxin MA,Zhijun QIAO. Spectral analysis of generalized Volterra equation[J]. Front. Math. China, 2019, 14(5): 1063-1075.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0795-3
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I5/1063
1 M J Ablowitz, G Biondini, B Prinari. Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions. Inverse Problems, 2007, 23: 1711–1758
https://doi.org/10.1088/0266-5611/23/4/021
2 G Biondini, G Kovačić. Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J Math Phys, 2014, 55: 031506
https://doi.org/10.1063/1.4868483
3 H H Dai, X G Geng. Decomposition of a 2+ 1-dimensional Volterra type lattice and its quasi-periodic solutions. Chaos Solitons Fractals, 2003, 18: 1031–1044
https://doi.org/10.1016/S0960-0779(03)00061-4
4 X G Geng, H Liu. The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J Nonlinear Sci, 2018, 28: 739–763
https://doi.org/10.1007/s00332-017-9426-x
5 R Hirota, J Satsuma. N-soliton solution of non-linear network equations describing a Volterra system. J Phys Soc Japan, 1976, 40: 891–900
https://doi.org/10.1143/JPSJ.40.891
6 M Kac, P van Moerbeke. On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices. Adv Math, 1975, 16: 160–169
https://doi.org/10.1016/0001-8708(75)90148-6
7 S Manakov. Complete integrability and stochastization of discrete dynamical systems. Sov Phys JETP, 1974, 40: 269–274
8 Y B Suris. The Problem of Integrable Discretization: Hamiltonian Approach. Basel: Birkhäuser Verlag, 2003
https://doi.org/10.1007/978-3-0348-8016-9
9 V E Vekslerchik. Explicit solutions for a (2+ 1)-dimensional Toda-like chain. J Phys A: Math Gen, 2013, 46: 055202
https://doi.org/10.1088/1751-8113/46/5/055202
10 J Wei, X G Geng. A vector generalization of Volterra type differential-difference equations. Appl Math Lett, 2016, 55: 36–41
https://doi.org/10.1016/j.aml.2015.11.008
11 Y T Wu, D L Du. On the Lie-Poisson structure of the nonlinearized discrete eigenvalue problem. J Math Phys, 2000, 41: 5832–5848
https://doi.org/10.1063/1.533440
12 Y T Wu, X G Geng. A new hierarchy of integrable differential-difference equations and Darboux transformation. J Phys A: Math Gen, 1998, 31: L677–L684
https://doi.org/10.1088/0305-4470/31/38/004
13 Y Zeng, S Rauch-Wojciechowski. Continuous limits for the Kac-Van Moerbeke hierarchy and for their restricted flows. J Phys A: Math Gen, 1995, 28: 3825–3840
https://doi.org/10.1088/0305-4470/28/13/026
14 J Y Zhu, L L Wang, X G Geng. Riemann-Hilbert approach to the TD equation with nonzero boundary condition. Front Math China, 2018, 13: 1245–1265
https://doi.org/10.1007/s11464-018-0729-5
15 J Y Zhu, L L Wang, Z J Qiao. Inverse spectral transform for the Ragnisco-Tu equation with Heaviside initial condition. J Math Anal Appl, 2019, 474: 452–466
https://doi.org/10.1016/j.jmaa.2019.01.054
[1] Senyue LOU,Ying SHI,Da-jun ZHANG. Spectrum transformation and conservation laws of lattice potential KdV equation[J]. Front. Math. China, 2017, 12(2): 403-416.
[2] Hideshi YAMANE. Asymptotic behavior of solutions of defocusing integrable discrete nonlinear Schr?dinger equation[J]. Front Math Chin, 2013, 8(5): 1077-1083.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed