Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (6) : 1231-1258    https://doi.org/10.1007/s11464-019-0809-1
RESEARCH ARTICLE
Normalized integral table algebras generated by a faithful real element of degree 2 and having 4 linear elements
Yu LI, Guiyun CHEN()
School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
 Download: PDF(359 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We completely classify the normalized integral table algebra (A, B) generated by a faithful real element of degree 2 and having four linear elements.

Keywords Faithful      normalized      integral table algebra (ITA)      normalized integral table algebra (NITA)      classification     
Corresponding Author(s): Guiyun CHEN   
Issue Date: 07 January 2020
 Cite this article:   
Yu LI,Guiyun CHEN. Normalized integral table algebras generated by a faithful real element of degree 2 and having 4 linear elements[J]. Front. Math. China, 2019, 14(6): 1231-1258.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0809-1
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I6/1231
1 Z Arad, H Arisha, E Fisman, M Muzychuk. Integral standard table algebras with a faithful nonreal element of degree 3. J Algebra, 2000, 231(2): 473–483
https://doi.org/10.1006/jabr.2000.8291
2 Z Arad, H I Blau. On table algebras and application to _nite group theory. J Algebra, 1991, 138: 137–185
https://doi.org/10.1016/0021-8693(91)90195-E
3 Z Arad, Y Erez, M Muzychuk. On homogeneous standard integral table algebras of degree 4. Comm Algebra, 2006, 34(2): 463–519
https://doi.org/10.1080/00927870500387572
4 Z Arad, E Fisman, H I Blau. Table algebras and applications to products of characters in _nite groups. J Algebra, 1991, 138: 186–194
https://doi.org/10.1016/0021-8693(91)90196-F
5 Z Arad, M Muzychuk. Standard Integral Table Algebras Generated by a Non-real Element of Small Degree. Berlin: Springer-Verlag, 2002
https://doi.org/10.1007/b82936
6 Z Arad, B Xu, G Chen, A H I Hussam, M Muzychuk. On Normalized Integral Table Algebras (Fusion Rings): Generated by a Faithful Non-real Element of Degree 3. London: Springer-Verlag, 2011
https://doi.org/10.1007/978-0-85729-850-8
7 H I Blau. Quotient structures in C-algebra. J Algebra, 1995, 177: 297–337
https://doi.org/10.1006/jabr.1995.1300
8 H I Blau. Integral table algebras, a_ne diagrams, and the analysis of degree two. J Algebra, 1995, 178: 872–918
https://doi.org/10.1006/jabr.1995.1382
9 H I Blau. Homogeneous integral table algebras of degree two. Algebra Colloq, 1997, 4(4): 393–408
10 H I Blau. Integral table algebras and Bose-Mesner algebras with a faithful nonreal element of degree 3. J Algebra, 2000, 231(2): 484–545
https://doi.org/10.1006/jabr.1999.8188
11 G Chen, Z Arad. On four normalized table algebras generated by a faithful nonreal element of degree 3. J Algebra, 2005, 283: 457–484
https://doi.org/10.1016/j.jalgebra.2004.09.008
12 G James, M Liebeck. Representations and Characters of Groups. Cambridge: Cambridge Univ Press, 2001
https://doi.org/10.1017/CBO9780511814532
13 Y Li, G Chen. On normalized integral table algebras generated by a non-real faithful element of degree 2. Preprint
[1] Jiajie HUA, Xiaochun FANG, Xiao-Ming XU. Continuity of functors with respect to generalized inductive limits[J]. Front. Math. China, 2019, 14(3): 551-566.
[2] Li-meng XIA,Naihong HU. A class of Lie algebras arising from intersection matrices[J]. Front. Math. China, 2015, 10(1): 185-198.
[3] Jixia YUAN, Wende LIU. Filtration, automorphisms, and classification of infinite-dimensional odd contact superalgebras[J]. Front Math Chin, 2013, 8(1): 203-216.
[4] M. J. NIKMEHR, F. FATAHI. Remarks on α-strongly irreducible ideals[J]. Front Math Chin, 2011, 6(5): 901-910.
[5] Ruipu BAI, Guojie SONG, Yaozhong ZHANG. On classification of n-Lie algebras[J]. Front Math Chin, 2011, 6(4): 581-606.
[6] Feilong CAO, Xing XING. Learning rates for multi-kernel linear programming classifiers[J]. Front Math Chin, 2011, 6(2): 203-219.
[7] Qinhui JIANG, Changguo SHAO. Finite groups with 24 elements of maximal order[J]. Front Math Chin, 2010, 5(4): 665-678.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed