Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (5) : 1035-1046    https://doi.org/10.1007/s11464-020-0862-9
RESEARCH ARTICLE
Superminimal surfaces in hyperquadric Q2
Jun WANG1, Jie FEI2()
1. School of Mathematics Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, China
2. Department of Pure Mathematics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
 Download: PDF(298 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study a superminimal surface M immersed into a hyperquadric Q2 in several cases classified by two global defined functions τX and τY, which were introduced by X. X. Jiao and J. Wang to study a minimal immersion f : MQ2. In case both τX and τY are not identically zero, it is proved that f is superminimal if and only if f is totally real or if:MP3 is also minimal, where i:Q2P3 is the standard inclusion map. In the rest case that τX0 or τY0, the minimal immersion f is automatically superminimal. As a consequence, all the superminimal two-spheres in Q2 are completely described.

Keywords Hyperquadric      superminimal surface      totally real      holomorphic     
Corresponding Author(s): Jie FEI   
Issue Date: 19 November 2020
 Cite this article:   
Jun WANG,Jie FEI. Superminimal surfaces in hyperquadric Q2[J]. Front. Math. China, 2020, 15(5): 1035-1046.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0862-9
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I5/1035
1 J Bolton, G R Jensen, M Rigoli, L M Woodward. On conformal minimal immersions of S2 into ℂPn. Math Ann, 1988, 279: 599–620
https://doi.org/10.1007/BF01458531
2 R L Bryant. Conformal and minimal immersions of compact surfaces into the 4-sphere. J Differential Geom, 1982, 17: 455–473
https://doi.org/10.4310/jdg/1214437137
3 S S Chern, J G Wolfson. Minimal surfaces by moving frames. Amer J Math, 1983, 105: 59–83
https://doi.org/10.2307/2374381
4 A M Din, W J Zakrzewski. General classical solutions in the ℂPn model. Nuclear Phys B, 1980, 174: 397–406
https://doi.org/10.1016/0550-3213(80)90291-6
5 J Eells, J C Wood. Harmonic maps from surfaces to complex projective spaces. Adv Math, 1983, 49: 217–263
https://doi.org/10.1016/0001-8708(83)90062-2
6 J Fei, J Wang. Local rigidity of minimal surfaces in a hyperquadric Q2. J Geom Phys, 2018, 133: 17–25
https://doi.org/10.1016/j.geomphys.2018.05.017
7 X X Jiao, J Wang. Conformal minimal two-spheres in Qn. Sci China Math, 2011, 54(4): 817–830
https://doi.org/10.1007/s11425-011-4179-8
8 X X Jiao, J Wang. Minimal surfaces in a complex hyperquadric Q2. Manuscripta Math, 2013, 140: 597–611
https://doi.org/10.1007/s00229-012-0554-1
9 C K Peng, J Wang, X W Xu. Minimal two-spheres with constant curvature in the complex hyperquadric. J Math Pures Appl, 2016, 106: 453–476
https://doi.org/10.1016/j.matpur.2016.02.017
10 J Wang, X W Xu. Minimal surfaces in the complex hyperquadric Q2 II. Proc Amer Math Soc, 2015, 143: 2693–2703
https://doi.org/10.1090/S0002-9939-2015-12479-3
11 J G Wolfson. On minimal surfaces in a Kähler manifold of constant holomorphic sectional curvature. Trans Amer Math Soc, 1985, 290(2): 597–611
https://doi.org/10.2307/2000303
12 J G Wolfson. Harmonic maps of the two-sphere into the complex hyperquadric. J Differential Geom, 1986, 24: 141–152
https://doi.org/10.4310/jdg/1214440432
13 K Yang. Frenet formulae for holomorphic curves in the two quadric. Bull Aust Math Soc, 1986, 33: 195–206
https://doi.org/10.1017/S0004972700003063
14 K Yang. Complete and Compact Minimal Surfaces. Dordrecht: Kluwer Academic, 1989
https://doi.org/10.1007/978-94-009-1015-7
15 X Zhong, J Wang, X X Jiao. Totally real conformal minimal tori in the hyperquadric Q2. Sci China Math, 2013, 56: 2015–2023
https://doi.org/10.1007/s11425-013-4600-6
[1] Fei HOU. Oscillations of coefficients of symmetric square L-functions over primes[J]. Front. Math. China, 2015, 10(6): 1325-1341.
[2] Xiao CHEN. On a geometric realization of C?-algebras[J]. Front. Math. China, 2014, 9(2): 261-274.
[3] Jun WANG, Xiaoxiang JIAO. Conformal minimal two-spheres in Q2[J]. Front Math Chin, 2011, 6(3): 535-544.
[4] Xiaoli HAN, Jiayu LI. Singularities of symplectic and Lagrangian mean curvature flows[J]. Front Math Chin, 2009, 4(2): 283-296.
[5] HAN Xiaoli, HAN Xiaoli, LI Jiayu, LI Jiayu. On symplectic mean curvature flows[J]. Front. Math. China, 2007, 2(1): 47-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed