Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2020, Vol. 15 Issue (5) : 1047-1070    https://doi.org/10.1007/s11464-020-0865-6
RESEARCH ARTICLE
Reducible solution to a quaternion tensor equation
Mengyan XIE, Qing-Wen WANG()
Department of Mathematics, Shanghai University, Shanghai 200444, China
 Download: PDF(325 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We establish necessary and sufficient conditions for the existence of the reducible solution to the quaternion tensor equation A*NX*NB=Cvia Einstein product using Moore-Penrose inverse, and present an expression of the reducible solution to the equation when it is solvable. Moreover, to have a general solution, we give the solvability conditions for the quaternion tensor equation A1*NX1*MB1+A1*NX2*MB2+A2*NX3*MB2=C, which plays a key role in investigating the reducible solution to A*NX*NB=C. The expression of such a solution is also presented when the consistency conditions are met. In addition, we show a numerical example to illustrate this result.

Keywords Quaternion tensor      quaternion tensor equation      Einstein product      Moore-Penrose inverse      general solution      reducible solution     
Corresponding Author(s): Qing-Wen WANG   
Issue Date: 19 November 2020
 Cite this article:   
Mengyan XIE,Qing-Wen WANG. Reducible solution to a quaternion tensor equation[J]. Front. Math. China, 2020, 15(5): 1047-1070.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0865-6
https://academic.hep.com.cn/fmc/EN/Y2020/V15/I5/1047
1 M Artzouni, J P Gouteux. A parity-structured matrix model for tsetse populations. Math Biosci, 2006, 204(2): 215–231
https://doi.org/10.1016/j.mbs.2006.08.022
2 B W Bader, T G Kolda. Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans Math Software, 2006, 32(4): 635–653
https://doi.org/10.1145/1186785.1186794
3 R Behera, D Mishra. Further results on generalized inverses of tensors via the Einstein product, Linear Multilinear Algebra, 2017, 65(8): 1662–1682
https://doi.org/10.1080/03081087.2016.1253662
4 A Ben-Israel, T N E Greville. Generalized Inverses: Theory and Applications. New York: McGraw-Hill, 1974
5 N L Bihan, J Mars. Singular value decomposition of quaternion matrices: A new tool for vector-sensor signal processing. Signal Process, 2004, 84(7): 1177–1199
https://doi.org/10.1016/j.sigpro.2004.04.001
6 R Bouldin. The pseudo-inverse of a product. SIAM J Appl Math, 1973, 24(4): 489–495
https://doi.org/10.1137/0124051
7 M Brazell, N Li, C Navasca, C Tamon. Solving multilinear systems via tensor inversion. SIAM J Matrix Anal Appl, 2013, 34(2): 542–570
https://doi.org/10.1137/100804577
8 K C Chang, K Pearson, T Zhang. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6(2): 507–520
https://doi.org/10.4310/CMS.2008.v6.n2.a12
9 Z Chen, L Z Lu. A projection method and Kronecker product preconditioner for solving Sylvester tensor equations. Sci China Math, 2012, 55(6): 1281–1292
https://doi.org/10.1007/s11425-012-4363-5
10 D Cvetković-Ilića, Q W Wang, Q X Xu. Douglas’ + Sebestyén’s lemmas= a tool for solving an operator equation problem. J Math Anal Appl, 2019, 482(2): 123599
https://doi.org/10.1016/j.jmaa.2019.123599
11 W Ding, L Qi, Y Wei. Fast Hankel tensor-vector product and its application to exponential data fitting. Numer Linear Algebra Appl, 2015, 22(5): 814–832
https://doi.org/10.1002/nla.1970
12 W Ding, L Qi, Y Wei. Inheritance properties and sum-of-squares decomposition of Hankel tensors: theory and algorithms. BIT, 2017, 57(1): 169–190
https://doi.org/10.1007/s10543-016-0622-0
13 A Einstein. The foundation of the general theory of relativity. Ann Phys, 1916, 49(7): 769–822
https://doi.org/10.1002/andp.19163540702
14 Y Guan, D L Chu. Numerical computation for orthogonal low-rank approximation of tensors. SIAM J Matrix Anal Appl, 2019, 40(3): 1047–1065
https://doi.org/10.1137/18M1208101
15 Y Guan, M T Chu, D L Chu. Convergence analysis of an SVD-based algorithm for the best rank-1 tensor approximation. Linear Algebra Appl, 2018, 555: 53–69
https://doi.org/10.1016/j.laa.2018.06.006
16 Y Guan, M T Chu, D L Chu. SVD-based algorithms for the best rank-1 approximation of a symmetric tensor. SIAM J Matrix Anal Appl, 2018, 39(3): 1095–1115
https://doi.org/10.1137/17M1136699
17 W R Hamilton. Elements of Quaternions. Cambridge: Cambridge Univ Press, 1866
18 Z H He. The general solution to a system of coupled Sylvester-type quaternion tensor equations involving ŋ-Hermicity. Bull Iranian Math Soc, 2019, 45: 1407–1430
https://doi.org/10.1007/s41980-019-00205-7
19 Z H He, C Navasca, Q W Wang. Tensor decompositions and tensor equations over quaternion algebra. arXiv: 1710.07552
20 Z H He, Q W Wang. The ŋ-bihermitian solution to a system of real quaternion matrix equations. Linear Multilinear Algebra, 2014, 62(11): 1509–1528
https://doi.org/10.1080/03081087.2013.839667
21 G X Huang, F Yin, K Guo. An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB = C. J Comput Appl Math, 2008, 212(2): 231–244
22 S J Kirkland, M Neumann, J H Xu. Transition matrices for well-conditioned Markov chains. Linear Algebra Appl, 2007, 424(1): 118–131
https://doi.org/10.1016/j.laa.2006.06.003
23 T G Kolda, B W Bader. Tensor decompositions and applications. SIAM Rev, 2009, 51(3): 455–500
https://doi.org/10.1137/07070111X
24 W M Lai, D H Rubin, E Krempl. Introduction to continuum mechanics. Burlington: Butterworth-Heinemann/Elsevier, 2009
https://doi.org/10.1016/B978-0-7506-8560-3.00001-3
25 J Z Lei, C Y Wang. On the reducibility of compartmental matrices. Comput Biol Med, 2008, 38(8): 881–885
https://doi.org/10.1016/j.compbiomed.2008.05.004
26 S D Leo, G Scolarici. Right eigenvalue equation in quaternionic quantum mechanics. J Phys A, 2000, 33(15): 2971–2995
https://doi.org/10.1088/0305-4470/33/15/306
27 L Li, B D Zheng. Sensitivity analysis of the Lyapunov tensor equation. Linear Multilinear Algebra, 2019, 67(3): 555–572
https://doi.org/10.1080/03081087.2018.1426714
28 L Li, B D Zheng, Y B Tian. Algebraic Lyapunov and Stein stability results for tensors. Linear Multilinear Algebra, 2018, 66(4): 731–741
https://doi.org/10.1080/03081087.2017.1320964
29 T Li, Q W Wang, X F Duan. Numerical algorithms for solving discrete Lyapunov tensor equation. J Comput Appl Math, 2019, 370: 112676
https://doi.org/10.1016/j.cam.2019.112676
30 T Li, Q W Wang, X F Zhang. Hermitian and skew-Hermitian splitting methods for solving a tensor equation. Int J Comput Math,
https://doi.org/10.1080/00207160.2020.1815717
31 M L Liang, B Zheng, R J Zhao. Tensor inversion and its application to tensor equation with Einstein product. Linear Multilinear Algebra, 2019, 67(4): 843–870
https://doi.org/10.1080/03081087.2018.1500993
32 A P Liao, Z Z Bai. Least-squares solution of AXB = D over symmetric positive semi-definite matrices X. J Comput Math, 2003 21: 175–182
33 A P Liao, Z Z Bai, Y Lei. Best approximate solution of matrix equation AXB+CY D =E. SIAM J Matrix Anal Appl, 2005, 27(3): 675–688
https://doi.org/10.1137/040615791
34 X R Nie, Q W Wang, Y Zhang. A system of matrix equations over the quaternion algebra with applications. Algebra Colloq, 2017, 24(2): 233–253
https://doi.org/10.1142/S100538671700013X
35 S C Pei, J H Chang, J J Ding. Quaternion matrix singular value decomposition and its applications for color image processing. In: International Conference on Image Processing IEEE Xplore 2003 (Cat No 03CH37429). Barcelona, Spain, 2003, I-805
36 Z Y Peng. The centro-symmetric solutions of linear matrix equation AXB = C and its optimal approximation. Chinese J Engrg Math, 2003, 20(6): 60–64
37 L Qi. Eigenvalues of a real supersymmetric tensors. J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
38 L Qi, H Chen, Y Chen. Tensor eigenvalues and their applications. Adv Mech Math, 2018
https://doi.org/10.1007/978-981-10-8058-6
39 L Qi, Z Y Luo. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017
https://doi.org/10.1137/1.9781611974751
40 A Rehman. Q W Wang, Z H He. Solution to a system of real quaternion matrix equations encompassing-Hermicity. Appl Math Comput, 2015, 265: 945–957
https://doi.org/10.1016/j.amc.2015.05.104
41 L Rodman. Topics in Quaternion Linear Algebra. Princeton: Princeton Univ Press, 2014
https://doi.org/10.23943/princeton/9780691161853.001.0001
42 P Santesso, M E Valcher. On the zero pattern properties and asymptotic behavior of continuous-time positive system trajectories. Linear Algebra Appl, 2007, 425: 283–302
https://doi.org/10.1016/j.laa.2007.01.014
43 J Y Shao. A general product of tensors with applications. Linear Algebra Appl, 2013, 439: 2350–2366
https://doi.org/10.1016/j.laa.2013.07.010
44 J Y Shao, L H You. On some properties of three different types of triangular blocked tensors. Linear Algebra Appl, 2016, 511: 110–140
https://doi.org/10.1016/j.laa.2016.09.001
45 X H Shi, Y M Wei, S Y Ling. Backward error and perturbation bounds for high order Sylvester tensor equation. Linear Multilinear Algebra, 2013, 61(10): 1436–1446
https://doi.org/10.1080/03081087.2012.743541
46 L Z Sun, B D Zheng, C J Bu, Y M Wei. Moore-Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra, 2016, 64(4): 686–698
https://doi.org/10.1080/03081087.2015.1083933
47 C C Took, D P Mandic. Quaternion-valued stochastic gradient-based adaptive IIR filtering. IEEE Trans Signal Process, 2010, 58(7): 3895–3901
https://doi.org/10.1109/TSP.2010.2047719
48 C C Took, D P Mandic. Augmented second-order statistics of quaternion random signals. Signal Process, 2011, 91(2): 214–224
https://doi.org/10.1016/j.sigpro.2010.06.024
49 Q W Wang. The general solution to a system of real quaternion matrix equations. Comput Math Appl, 2005, 49(5): 665–675
https://doi.org/10.1016/j.camwa.2004.12.002
50 Q W Wang, H X Chang, C Y Lin. P-(skew)symmetric common solutions to a pair of quaternion matrix equations. Appl Math Comput, 2008, 195(2): 721–732
https://doi.org/10.1016/j.amc.2007.05.021
51 Q W Wang, R Y Lv, Y Zhang. The least-squares solution with the least norm to a system of tensor equations over the quaternion algebra. Linear Multilinear Algebra,
https://doi.org/10.1080/03081087.2020.1779172
52 Q W Wang, X X Wang. Arnoldi method for large quaternion right eigenvalue problem. J Sci Comput, 2020, 82(3)
https://doi.org/10.1007/s10915-020-01158-4
53 M S Wei, Y Li, F X Zhang, J L Zhao. Quaternion Matrix Computations. New York: Nova Science Publishers, Inc, 2018
54 Y M Wei, W Y Ding. Theory and Computation of Tensors: Multi-Dimensional Arrays. London: Elsevier/Academic Press, 2016
55 S F Yuan, Q W Wang, X F Duan. On solutions of the quaternion matrix equation AX = B and their applications in color image restoration. Appl Math Comput, 2013, 221: 10–20
56 F Z Zhang. Quaternions and matrices of quaternions. Linear Algebra Appl, 1997, 251: 21{57
https://doi.org/10.1016/0024-3795(95)00543-9
57 X F Zhang, Q W Wang, T Li. The accelerated overrelaxation splitting method for solving symmetric tensor equations. Comput Appl Math, 2020, 39(3): 1–14
https://doi.org/10.1007/s40314-020-01182-y
[1] Ziyan LUO, Liqun QI, Philippe L. TOINT. Tensor Bernstein concentration inequalities with an application to sample estimators for high-order moments[J]. Front. Math. China, 2020, 15(2): 367-384.
[2] Jun JI, Yimin WEI. Weighted Moore-Penrose inverses and fundamental theorem of even-order tensors with Einstein product[J]. Front. Math. China, 2017, 12(6): 1319-1337.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed