Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (1) : 95-117    https://doi.org/10.1007/s11464-021-0887-8
RESEARCH ARTICLE
Proper resolutions and Gorensteinness in extriangulated categories
Jiangsheng HU1, Dondong ZHANG2(), Panyue ZHOU3
1. Department of Mathematics, Jiangsu University of Technology, Changzhou 213001, China
2. Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
3. College of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China
 Download: PDF(317 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let (,E,s) be an extriangulated category with a proper class ξ of E-triangles, and W an additive full subcategory of (,E,s). We provide a method for constructing a proper Wξ-resolution (resp., coproper Wξ- coresolution) of one term in an E-triangle in ξ from that of the other two terms. By using this way, we establish the stability of the Gorenstein category GWξ in extriangulated categories. These results generalize the work of Z. Y. Huang [J. Algebra, 2013, 393: 142{169] and X. Y. Yang and Z. C. Wang [Rocky Mountain J. Math., 2017, 47: 1013{1053], but the proof is not too far from their case. Finally, we give some applications about our main results.

Keywords Proper resolution      coproper coresolution      extriangulated categories      Gorenstein categories     
Corresponding Author(s): Dondong ZHANG   
Issue Date: 26 March 2021
 Cite this article:   
Jiangsheng HU,Dondong ZHANG,Panyue ZHOU. Proper resolutions and Gorensteinness in extriangulated categories[J]. Front. Math. China, 2021, 16(1): 95-117.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0887-8
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I1/95
1 A Beligiannis. Relative homological algebra and purity in triangulated categories. J Algebra, 2000, 227: 268–361
https://doi.org/10.1006/jabr.1999.8237
2 J S Hu, D D Zhang, P Y Zhou. Proper classes and Gorensteinness in extriangulated categories. J Algebra, 2020, 551: 23–60
https://doi.org/10.1016/j.jalgebra.2019.12.028
3 Z Y Huang. Proper resolutions and Gorenstein categories. J Algebra, 2013, 393: 142–169
https://doi.org/10.1016/j.jalgebra.2013.07.008
4 X Ma, T W Zhao, Z Y Huang. Resolving subcategories of triangulated categories and relative homological dimension. Acta Math Sinica, 2017, 33: 1513–1535
https://doi.org/10.1007/s10114-017-6416-8
5 N Nakaoka, Y Palu. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah Topol Géom Différ Catég, 2019, 60(2): 117–193
6 W Ren, Z K Liu. Gorenstein homological dimensions for triangulated categories. J Algebra, 2014, 410: 258–276
https://doi.org/10.1016/j.jalgebra.2014.03.037
7 S Sather-Wagstaff, T, Sharif D. WhiteStability of Gorenstein categories. J Lond Math Soc, 2008, 77: 481–502
https://doi.org/10.1112/jlms/jdm124
8 Z P, Wang S T Guo, C L Liang. Stability of Gorenstein objects in triangulated categories. Sci Sin Math (Chin Ser), 2017, 47: 349–356(in Chinese)
https://doi.org/10.1360/012016-3
9 X Y Yang. Notes on proper class of triangles. Acta Math Sinica (Engl Ser), 2013, 29: 2137–2154
https://doi.org/10.1007/s10114-013-2435-2
10 X Y Yang. Model structures on triangulated categories. Glasg Math J, 2015, 57: 263–284
https://doi.org/10.1017/S0017089514000299
11 X Y Yang, Z C Wang. Proper resolutions and Gorensteiness in triangulated categories. Rocky Mountain J Math, 2017, 47: 1013–1053
https://doi.org/10.1216/RMJ-2017-47-3-1013
12 P Y Zhou, B Zhu. Triangulated quotient categories revisited. J Algebra, 2018, 502: 196–232
https://doi.org/10.1016/j.jalgebra.2018.01.031
[1] Li LIANG. Vanishing of stable homology with respect to a semidualizing module[J]. Front. Math. China, 2018, 13(1): 107-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed