|
|
|
Diophantine inequalities over Piatetski-Shapiro primes |
Jing HUANG1, Wenguang ZHAI2, Deyu ZHANG1( ) |
1. School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China 2. Department of Mathematics, China University of Mining and Technology, Beijing 100083, China |
|
| 1 |
R C Baker, G Harman, J Rivat. Primes of the form [nc]. J Number Theory, 1995, 50: 261–277
https://doi.org/10.1006/jnth.1995.1020
|
| 2 |
R C Baker, A Weingartner. Some applications of the double large sieve. Monatsh Math, 2013, 170: 261–304
https://doi.org/10.1007/s00605-012-0447-0
|
| 3 |
R C Baker, A Weingartner. A ternary Diophantine inequality over primes. Acta Arith, 2014, 162: 159–196
https://doi.org/10.4064/aa162-2-3
|
| 4 |
Y C Cai. A Diophantine inequality with prime variables. Acta Math Sinica (Chin Ser), 1996, 39: 733–742 (in Chinese)
|
| 5 |
Y C Cai. On a Diophantine inequality involving prime numbers III. Acta Math Sin (Engl Ser), 1999, 15: 387–394
https://doi.org/10.1007/BF02650733
|
| 6 |
Y C Cai. A ternary Diophantine inequality involving primes. Int J Number Theory, 2018, 14: 2257–2268
https://doi.org/10.1142/S1793042118501361
|
| 7 |
X D Cao, W G Zhai. A Diophantine inequality with prime numbers. Acta Math Sinica (Chin Ser), 2002, 45: 361–370 (in Chinese)
|
| 8 |
M Z Garaev. On the Waring-Goldbach problem with small non-integer exponent. Acta Arith, 2003, 108: 297–302
https://doi.org/10.4064/aa108-3-8
|
| 9 |
S W Graham, G Kolesnik. Van der Corput's Method of Exponential Sums. London Math Soc Lecture Note Ser, 126. Cambridge: Cambridge Univ Press, 1991
https://doi.org/10.1017/CBO9780511661976
|
| 10 |
X Han, H F Liu, D Y Zhang. A system of two Diophantine inequalities with primes. J Math, 2021, Art ID: 6613947 (12 pp)
https://doi.org/10.1155/2021/6613947
|
| 11 |
G Harman. The values of ternary quadratic forms at prime arguments. Mathematika, 2004, 51: 83–96
https://doi.org/10.1112/S0025579300015527
|
| 12 |
D R Heath-Brown. The Piatetski-Shapiro prime number theorem. J Number Theory, 1983, 16: 242–266
https://doi.org/10.1016/0022-314X(83)90044-6
|
| 13 |
C H Jia. The distribution of square-free number (II). Sci China Ser A, 1992, 22(8): 812–827 (in Chinese)
https://doi.org/10.1360/za1992-22-8-812
|
| 14 |
C H Jia. On Piatetski-Shapiro prime number theorem II. Sci China Ser A, 1993, 36: 913–926
|
| 15 |
C H Jia. On Piatetski-Shapiro prime number theorem. Chin Ann Math Ser B, 1994, 15: 9–22
|
| 16 |
G A Kolesnik. The distribution of primes in sequences of the form [nc]: Mat Zametki, 1967, 2: 117–128
https://doi.org/10.1007/BF01094244
|
| 17 |
G A Kolesnik. Primes of the form [nc]: Pacific J Math, 1985, 118: 437–447
https://doi.org/10.2140/pjm.1985.118.437
|
| 18 |
A Kumchev. A Diophantine inequality involving prime powers. Acta Arith, 1999, 89: 311–330
https://doi.org/10.4064/aa-89-4-311-330
|
| 19 |
A Kumchev. On the distribution of prime numbers of the form [nc]: Glasg Math J, 1999, 41: 85–102
https://doi.org/10.1017/S0017089599970477
|
| 20 |
A Kumchev, M B S Laporta. On a binary Diophantine inequality involving prime pow-ers. In: Number Theory for the Millennium II (Urbana, IL, 2000). Wellesley: A K Peters, 2002, 307–329
|
| 21 |
A Kumchev, T Nedeva. On an equation with prime numbers. Acta Arith, 1998, 83: 117–126
https://doi.org/10.4064/aa-83-2-117-126
|
| 22 |
A Kumchev, Z Petrov. A hybrid of two theorems of Piatetski-Shapiro. Monatsh Math, 2019, 189: 355–376
https://doi.org/10.1007/s00605-018-1217-4
|
| 23 |
S H Li, Y C Cai. On a Diophantine inequality involving prime numbers. Ramanujan J, 2020, 52: 163–174
https://doi.org/10.1007/s11139-018-0132-6
|
| 24 |
T Y Li, H F Liu. Diophantine approximation over Piatetski-Shapiro primes. J Number Theory, 2020, 211: 184–198
https://doi.org/10.1016/j.jnt.2019.10.002
|
| 25 |
H F Liu. Diophantine approximation with one prime, two squares of primes and powers of two. Ramanujan J, 2020, 51: 85–97
https://doi.org/10.1007/s11139-018-0121-9
|
| 26 |
H F Liu, J Huang. Diophantine approximation with mixed powers of primes. Taiwanese J Math, 2019, 23: 1073–1090
https://doi.org/10.11650/tjm/190201
|
| 27 |
H Q Liu. On the number of abelian groups of a given order. Acta Arith, 1991, 59: 261–277
https://doi.org/10.4064/aa-59-3-261-277
|
| 28 |
H Q Liu, J Rivat. On the Piatetski-Shapiro prime number theorem. Bull Lond Math Soc, 1992, 24: 143–147
https://doi.org/10.1112/blms/24.2.143
|
| 29 |
I I Piatetski-Shapiro. On a variant of the Waring-Goldbach problem. Mat Sbornik N S, 1952, 30: 105–120
|
| 30 |
I I Piatetski-Shapiro. On the distribution of prime numbers in sequences of the form [f(n)]: Mat Sbornik N S, 1953, 33: 559–566
|
| 31 |
J Rivat, P Sargos. Nombres premiers de la forme [nc]: Canad J Math, 2001, 53: 414–433
https://doi.org/10.4153/CJM-2001-017-0
|
| 32 |
J Rivat, J Wu. Prime numbers of the form [nc]: Glasg Math J, 2001, 43: 237–254
https://doi.org/10.1017/S0017089501020080
|
| 33 |
P Sargos . Points entiers au voisinage d'une courbe, sommes trigonometriques courtes et paires d'exposants. Proc Lond Math Soc, 1995, 70: 285–312
https://doi.org/10.1112/plms/s3-70.2.285
|
| 34 |
D I Tolev. On a Diophantine inequality involving prime numbers. Acta Arith, 1992, 61: 289–306
https://doi.org/10.4064/aa-61-3-289-306
|
| 35 |
R C Vaughan. Diophantine inequality by prime numbers I. Proc Lond Math Soc, 1974, 28: 373–384
https://doi.org/10.1112/plms/s3-28.2.373
|
| 36 |
R C Vaughan. Diophantine inequality by prime numbers II. Proc Lond Math Soc, 1974, 28: 385–401
https://doi.org/10.1112/plms/s3-28.3.385
|
| 37 |
R C Vaughan. Diophantine inequality by prime numbers III. Proc Lond Math Soc, 1976, 33: 177–192
https://doi.org/10.1112/plms/s3-33.1.177
|
| 38 |
W G Zhai, X D Cao. On a Diophantine inequality over primes. Adv Math (China), 2003, 32: 63–73
|
| 39 |
W G Zhai, X D Cao. On a Diophantine inequality over primes II. Monatsh Math, 2007, 150: 173–179
https://doi.org/10.1007/s00605-005-0390-4
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|