Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (3) : 749-770    https://doi.org/10.1007/s11464-021-0916-7
RESEARCH ARTICLE
Diophantine inequalities over Piatetski-Shapiro primes
Jing HUANG1, Wenguang ZHAI2, Deyu ZHANG1()
1. School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China
2. Department of Mathematics, China University of Mining and Technology, Beijing 100083, China
 Download: PDF(342 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let c>1 and 0<γ<1: We study the solubility of the Diophantine inequality |p1c+p2c++pscN|<(logN)1 in Piatetski-Shapiro primes p1,p2, .., ps of the form pj=[mγ] for some m, and improve the previous results in the cases s = 2, 3, 4.

Keywords Diophantine inequalities      Piatetski-Shapiro primes      exponential sums      additive problems     
Corresponding Author(s): Deyu ZHANG   
Issue Date: 14 July 2021
 Cite this article:   
Jing HUANG,Wenguang ZHAI,Deyu ZHANG. Diophantine inequalities over Piatetski-Shapiro primes[J]. Front. Math. China, 2021, 16(3): 749-770.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0916-7
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I3/749
1 R C Baker, G Harman, J Rivat. Primes of the form [nc]. J Number Theory, 1995, 50: 261–277
https://doi.org/10.1006/jnth.1995.1020
2 R C Baker, A Weingartner. Some applications of the double large sieve. Monatsh Math, 2013, 170: 261–304
https://doi.org/10.1007/s00605-012-0447-0
3 R C Baker, A Weingartner. A ternary Diophantine inequality over primes. Acta Arith, 2014, 162: 159–196
https://doi.org/10.4064/aa162-2-3
4 Y C Cai. A Diophantine inequality with prime variables. Acta Math Sinica (Chin Ser), 1996, 39: 733–742 (in Chinese)
5 Y C Cai. On a Diophantine inequality involving prime numbers III. Acta Math Sin (Engl Ser), 1999, 15: 387–394
https://doi.org/10.1007/BF02650733
6 Y C Cai. A ternary Diophantine inequality involving primes. Int J Number Theory, 2018, 14: 2257–2268
https://doi.org/10.1142/S1793042118501361
7 X D Cao, W G Zhai. A Diophantine inequality with prime numbers. Acta Math Sinica (Chin Ser), 2002, 45: 361–370 (in Chinese)
8 M Z Garaev. On the Waring-Goldbach problem with small non-integer exponent. Acta Arith, 2003, 108: 297–302
https://doi.org/10.4064/aa108-3-8
9 S W Graham, G Kolesnik. Van der Corput's Method of Exponential Sums. London Math Soc Lecture Note Ser, 126. Cambridge: Cambridge Univ Press, 1991
https://doi.org/10.1017/CBO9780511661976
10 X Han, H F Liu, D Y Zhang. A system of two Diophantine inequalities with primes. J Math, 2021, Art ID: 6613947 (12 pp)
https://doi.org/10.1155/2021/6613947
11 G Harman. The values of ternary quadratic forms at prime arguments. Mathematika, 2004, 51: 83–96
https://doi.org/10.1112/S0025579300015527
12 D R Heath-Brown. The Piatetski-Shapiro prime number theorem. J Number Theory, 1983, 16: 242–266
https://doi.org/10.1016/0022-314X(83)90044-6
13 C H Jia. The distribution of square-free number (II). Sci China Ser A, 1992, 22(8): 812–827 (in Chinese)
https://doi.org/10.1360/za1992-22-8-812
14 C H Jia. On Piatetski-Shapiro prime number theorem II. Sci China Ser A, 1993, 36: 913–926
15 C H Jia. On Piatetski-Shapiro prime number theorem. Chin Ann Math Ser B, 1994, 15: 9–22
16 G A Kolesnik. The distribution of primes in sequences of the form [nc]: Mat Zametki, 1967, 2: 117–128
https://doi.org/10.1007/BF01094244
17 G A Kolesnik. Primes of the form [nc]: Pacific J Math, 1985, 118: 437–447
https://doi.org/10.2140/pjm.1985.118.437
18 A Kumchev. A Diophantine inequality involving prime powers. Acta Arith, 1999, 89: 311–330
https://doi.org/10.4064/aa-89-4-311-330
19 A Kumchev. On the distribution of prime numbers of the form [nc]: Glasg Math J, 1999, 41: 85–102
https://doi.org/10.1017/S0017089599970477
20 A Kumchev, M B S Laporta. On a binary Diophantine inequality involving prime pow-ers. In: Number Theory for the Millennium II (Urbana, IL, 2000). Wellesley: A K Peters, 2002, 307–329
21 A Kumchev, T Nedeva. On an equation with prime numbers. Acta Arith, 1998, 83: 117–126
https://doi.org/10.4064/aa-83-2-117-126
22 A Kumchev, Z Petrov. A hybrid of two theorems of Piatetski-Shapiro. Monatsh Math, 2019, 189: 355–376
https://doi.org/10.1007/s00605-018-1217-4
23 S H Li, Y C Cai. On a Diophantine inequality involving prime numbers. Ramanujan J, 2020, 52: 163–174
https://doi.org/10.1007/s11139-018-0132-6
24 T Y Li, H F Liu. Diophantine approximation over Piatetski-Shapiro primes. J Number Theory, 2020, 211: 184–198
https://doi.org/10.1016/j.jnt.2019.10.002
25 H F Liu. Diophantine approximation with one prime, two squares of primes and powers of two. Ramanujan J, 2020, 51: 85–97
https://doi.org/10.1007/s11139-018-0121-9
26 H F Liu, J Huang. Diophantine approximation with mixed powers of primes. Taiwanese J Math, 2019, 23: 1073–1090
https://doi.org/10.11650/tjm/190201
27 H Q Liu. On the number of abelian groups of a given order. Acta Arith, 1991, 59: 261–277
https://doi.org/10.4064/aa-59-3-261-277
28 H Q Liu, J Rivat. On the Piatetski-Shapiro prime number theorem. Bull Lond Math Soc, 1992, 24: 143–147
https://doi.org/10.1112/blms/24.2.143
29 I I Piatetski-Shapiro. On a variant of the Waring-Goldbach problem. Mat Sbornik N S, 1952, 30: 105–120
30 I I Piatetski-Shapiro. On the distribution of prime numbers in sequences of the form [f(n)]: Mat Sbornik N S, 1953, 33: 559–566
31 J Rivat, P Sargos. Nombres premiers de la forme [nc]: Canad J Math, 2001, 53: 414–433
https://doi.org/10.4153/CJM-2001-017-0
32 J Rivat, J Wu. Prime numbers of the form [nc]: Glasg Math J, 2001, 43: 237–254
https://doi.org/10.1017/S0017089501020080
33 P Sargos . Points entiers au voisinage d'une courbe, sommes trigonometriques courtes et paires d'exposants. Proc Lond Math Soc, 1995, 70: 285–312
https://doi.org/10.1112/plms/s3-70.2.285
34 D I Tolev. On a Diophantine inequality involving prime numbers. Acta Arith, 1992, 61: 289–306
https://doi.org/10.4064/aa-61-3-289-306
35 R C Vaughan. Diophantine inequality by prime numbers I. Proc Lond Math Soc, 1974, 28: 373–384
https://doi.org/10.1112/plms/s3-28.2.373
36 R C Vaughan. Diophantine inequality by prime numbers II. Proc Lond Math Soc, 1974, 28: 385–401
https://doi.org/10.1112/plms/s3-28.3.385
37 R C Vaughan. Diophantine inequality by prime numbers III. Proc Lond Math Soc, 1976, 33: 177–192
https://doi.org/10.1112/plms/s3-33.1.177
38 W G Zhai, X D Cao. On a Diophantine inequality over primes. Adv Math (China), 2003, 32: 63–73
39 W G Zhai, X D Cao. On a Diophantine inequality over primes II. Monatsh Math, 2007, 150: 173–179
https://doi.org/10.1007/s00605-005-0390-4
[1] Wenjia ZHAO. Hua’s theorem on five squares of primes[J]. Front. Math. China, 2020, 15(4): 835-850.
[2] Wenxu GE, Feng ZHAO, Tianqin WANG. On Diophantine approximation with one prime and three squares of primes[J]. Front. Math. China, 2019, 14(4): 761-779.
[3] Huan LIU. Sums of Fourier coefficients of cusp forms of level D twisted by exponential functions[J]. Front. Math. China, 2017, 12(3): 655-673.
[4] Claus BAUER. Large sieve inequality with sparse sets of moduli applied to Goldbach conjecture[J]. Front. Math. China, 2017, 12(2): 261-280.
[5] Tingting WANG, Wenpeng ZHANG. On hybrid mean value of Dedekind sums and two-term exponential sums[J]. Front Math Chin, 2011, 6(3): 557-563.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed