Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (3) : 655-673    https://doi.org/10.1007/s11464-016-0534-y
RESEARCH ARTICLE
Sums of Fourier coefficients of cusp forms of level D twisted by exponential functions
Huan LIU()
School of Mathematics, Shandong University, Jinan 250100, China
 Download: PDF(214 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let g be a holomorphic or Maass Hecke newform of level D and nebentypus χD, and let ag(n) be its n-th Fourier coefficient. We consider the sum S1=X<n2Xag(n)e(anβ) and prove that S1 has an asymptotic formula when β = 1/2 and αis close to ±2q/D for positive integer qX/4 and X sufficiently large. And when 0<β<1 and α, β fail to meet the above condition, we obtain upper bounds of S1. We also consider the sum S2=n>0ag(n)e(anβ)ϕ(n/X) with ϕ(x)Cc(0,+) and prove that S2 has better upper bounds than S1 at some special α and β.

Keywords exponential sums      cusp form      Fourier coefficients     
Corresponding Author(s): Huan LIU   
Issue Date: 20 April 2017
 Cite this article:   
Huan LIU. Sums of Fourier coefficients of cusp forms of level D twisted by exponential functions[J]. Front. Math. China, 2017, 12(3): 655-673.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0534-y
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I3/655
1 DeligneP. La conjecture de Weil.I. Inst Hautes Études Sci Publ Math, 1974, 43(1): 273–307
https://doi.org/10.1007/BF02684373
2 GradshteynI S, RyzhikI M. Table of Integrals, Series, and Products. 7th ed.New York: Academic Press, 2007
3 HuxleyM N. Area, Lattice Points, and Exponential Sums.London Math Soc Monogr New Ser, Vol 13. New York: Clarendon Press, Oxford Univ Press, 1996
4 IwaniecH, KowalskiE. Analytic Number Theory.Colloq Publications, Vol 53. Providence: Amer Math Soc, 2004
5 IwaniecH, LuoW, SarnakP. Low lying zeros of families of L-functions.Inst Hautes Études Sci Publ Math, 2000, 91: 55–131
https://doi.org/10.1007/BF02698741
6 KimH, SarnakP. Refined estimates towards the Ramanujan and Selberg conjectures (Appendix to: Kim H. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2).J Amer Math Soc, 2003, 16: 139–183
https://doi.org/10.1090/S0894-0347-02-00410-1
7 KowalskiE, MichelP, VanderkamJ. Rankin-Selberg L-functions in the level aspect.Duke Math J, 2002, 114(1): 123–191
https://doi.org/10.1215/S0012-7094-02-11416-1
8 LiuKui, RenXiumin. On exponential sums involving fourier coefficients of cusp forms.J Number Theory, 2012, 132(1): 171–181
https://doi.org/10.1016/j.jnt.2011.07.003
9 MillerS D, SchmidW. The highly oscillatory behavior of automorphic distributions for SL(2).Lett Math Phys, 2004, 69(1): 265–286
https://doi.org/10.1007/s11005-004-0470-8
10 PittN J E. On cusp form coefficients in exponential sums.Quart J Math, 2001, 52: 485–497
https://doi.org/10.1093/qjmath/52.4.485
11 RenXiumin, YeYangbo. Resonance between automorphic forms and exponential functions.Sci China Math, 2010, 53(9): 2463–2472
https://doi.org/10.1007/s11425-010-3150-4
12 ShahidiF. Best estimates for Fourier coefficients of Maass forms.In: Automorphic Forms and Analytic Number Theory (Montreal, PQ, 1989). Montreal: Univ Montréal, 1990, 135–141
13 SunQingfeng, WuYuanying. Exponential sums involving Maass forms.Front Math China, 2014, 9(6): 1349–1366
https://doi.org/10.1007/s11464-014-0360-z
14 WeiBin. Exponential sums twisted by Fourier coefficients of automorphic cusp forms for SL(2, ℤ).Int J Number Theory, 2015, 11(1): 39–49
https://doi.org/10.1142/S1793042115500025
15 WiltonJ R. A note on Ramanujan’s arithmetical function τ(n).Math Proc Cambridge Philos Soc, 1929, 25: 121–129
https://doi.org/10.1017/S0305004100018636
[1] Wenjia ZHAO. Hua’s theorem on five squares of primes[J]. Front. Math. China, 2020, 15(4): 835-850.
[2] Weili YAO. Mean-square estimate of automorphic L-functions[J]. Front. Math. China, 2020, 15(1): 205-213.
[3] Nathan SALAZAR, Yangbo YE. Spectral square moments of a resonance sum for Maass forms[J]. Front. Math. China, 2017, 12(5): 1183-1200.
[4] Claus BAUER. Large sieve inequality with sparse sets of moduli applied to Goldbach conjecture[J]. Front. Math. China, 2017, 12(2): 261-280.
[5] Fei HOU. Oscillations of coefficients of symmetric square L-functions over primes[J]. Front. Math. China, 2015, 10(6): 1325-1341.
[6] Liqun HU. Quadratic forms connected with Fourier coefficients of Maass cusp forms[J]. Front. Math. China, 2015, 10(5): 1101-1112.
[7] Qingfeng SUN,Yuanying WU. Exponential sums involving Maass forms[J]. Front. Math. China, 2014, 9(6): 1349-1366.
[8] Tingting WANG, Wenpeng ZHANG. On hybrid mean value of Dedekind sums and two-term exponential sums[J]. Front Math Chin, 2011, 6(3): 557-563.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed