Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (5) : 1101-1112    https://doi.org/10.1007/s11464-015-0416-8
RESEARCH ARTICLE
Quadratic forms connected with Fourier coefficients of Maass cusp forms
Liqun HU1,2,*()
1. Department of Mathematics, Shandong University, Jinan 250100, China
2. Department of Mathematics, Nanchang University, Nanchang 330031, China
 Download: PDF(139 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

For the normalized Fourier coefficients of Maass cusp forms λ(n) and the normalized Fourier coefficients of holomorphic cusp forms a(n), we give the bound of m12+m22+m32xλ(m12+m22+m32)Λ(m12+m22+m32) and m12+m22+m32xa(m12+m22+m32)Λ(m12+m22+m32).

Keywords Circle method      Fourier coefficients of Maass cusp forms      quadratic form      exponential sum     
Corresponding Author(s): Liqun HU   
Issue Date: 24 June 2015
 Cite this article:   
Liqun HU. Quadratic forms connected with Fourier coefficients of Maass cusp forms[J]. Front. Math. China, 2015, 10(5): 1101-1112.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0416-8
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I5/1101
1 Chamizo F, Iwaniec H. On the sphere problem. Rev Mat Iberoam, 1995, 11: 417-429
https://doi.org/10.4171/RMI/178
2 Chen J. Improvement of asymptotic formulas for the number of lattice points in a region of three dimensions (II). Sci Sin, 1963, 12: 751-764
3 Friedlander J B, Iwaniec H. Hyperbolic prime number theorem. Acta Math, 2009, 202: 1-19
https://doi.org/10.1007/s11511-009-0033-z
4 Guo Ruting, Zhai Wenguang. Some problem about the ternary quadratic form m12+m22+m32. Acta Arith, 2012, 156(2): 101-121
5 Heath-Brown D R. The Pjateckii-Shapiro prime number theorem. J Number Theory, 1983, 16: 242-266
https://doi.org/10.1016/0022-314X(83)90044-6
6 Heath-Brown D R. Lattice points in the sphere. In: Number Theory in Progress. Berlin: Walter de Gruyter, 1999, 883-892
https://doi.org/10.1515/9783110285581.883
7 Hua L K. Introduction to Number Theory. Beijing: Science Press, 1957 (in Chinese)
8 Pan Chengdong, Pan Chengbiao. Goldbach Conjecture. Beijing: Science Press, 1981 (in Chinese)
9 Perelli A. On some exponential sums connected with Ramanujan’s τ -function. Mathem<?Pub Caret?>atika, 1984, 31(1): 150-158
https://doi.org/10.1112/S0025579300010755
10 Vinogradov I M. On the number of integer points in a sphere. Izv Akad Nauk SSSR Ser Mat, 1963, 27: 957-968
[1] Wenjia ZHAO. Hua’s theorem on five squares of primes[J]. Front. Math. China, 2020, 15(4): 835-850.
[2] Rui ZHANG. Slim exceptional set for sums of two squares, two cubes, and two biquadrates of primes[J]. Front. Math. China, 2019, 14(5): 1017-1035.
[3] Xiaoguang HE. Exponential sums involving automorphic forms for GL(3) over arithmetic progressions[J]. Front. Math. China, 2018, 13(6): 1355-1368.
[4] Min ZHANG, Jinjiang LI. Distribution of cube-free numbers with form [nc][J]. Front. Math. China, 2017, 12(6): 1515-1525.
[5] Huan LIU. Sums of Fourier coefficients of cusp forms of level D twisted by exponential functions[J]. Front. Math. China, 2017, 12(3): 655-673.
[6] Claus BAUER. Large sieve inequality with sparse sets of moduli applied to Goldbach conjecture[J]. Front. Math. China, 2017, 12(2): 261-280.
[7] Meng ZHANG. Waring-Goldbach problems for unlike powers with almost equal variables[J]. Front. Math. China, 2016, 11(2): 449-460.
[8] Yuchao WANG. Values of binary linear forms at prime arguments[J]. Front. Math. China, 2015, 10(6): 1449-1459.
[9] Qingfeng SUN,Yuanying WU. Exponential sums involving Maass forms[J]. Front. Math. China, 2014, 9(6): 1349-1366.
[10] Yanjun YAO. Sums of nine almost equal prime cubes[J]. Front. Math. China, 2014, 9(5): 1131-1140.
[11] Hengcai TANG, Feng ZHAO. Waring-Goldbach problem for fourth powers in short intervals[J]. Front Math Chin, 2013, 8(6): 1407-1423.
[12] Weili YAO. Estimate for exponential sums and its applications[J]. Front Math Chin, 2012, 7(4): 765-783.
[13] Tingting WANG, Wenpeng ZHANG. On hybrid mean value of Dedekind sums and two-term exponential sums[J]. Front Math Chin, 2011, 6(3): 557-563.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed