Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (5) : 1131-1140    https://doi.org/10.1007/s11464-014-0384-4
RESEARCH ARTICLE
Sums of nine almost equal prime cubes
Yanjun YAO()
School of Mathematics, Shandong University, Jinan 250100, China
 Download: PDF(132 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We prove that each sufficiently large odd integer N can be written as sum of the form N=p13+p23+?+p93 with |pj-(N/9)1/3|N(1/3)-θ, where pj, j = 1, 2, … , 9, are primes and θ=(1/51)-?.

Keywords Waring-Goldbach problem      circle method      exponential sum over primes in short intervals     
Corresponding Author(s): Yanjun YAO   
Issue Date: 26 August 2014
 Cite this article:   
Yanjun YAO. Sums of nine almost equal prime cubes[J]. Front. Math. China, 2014, 9(5): 1131-1140.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0384-4
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I5/1131
1 Hua L K. Some results in the additive prime number theory. Q J Math, 1938, 9(1): 68-80
doi: 10.1093/qmath/os-9.1.68
2 Kumchev A V. On Weyl sums over primes in short intervals. In: “Arithmetic in Shangrila”—Proceedings of the 6th China-Japan Seminar on Number Theory. Series on Number Theory and Its Applications, 9. Singapore: World Scientific, 2012, 116-131
3 Li T Y. Additive Problems with Prime Numbers. Ph D Thesis. Shandong University, 2012 (in Chinese)
4 Liu J Y. An iterative method in the Waring-Goldbach problem. Chebyshevskii Sb, 2005, 5: 164-179
5 Lü G S. Sums of nine almost equal prime cubes. Acta Math Sinica (Chin Ser), 2006, 49: 195-204 (in Chinese)
6 Lü G S, Xu Y F. Hua’s theorem with nine almost equal prime variables. Acta Math Hungar, 2007, 116(4): 309-326
doi: 10.1007/s10474-007-6041-6
7 Meng X M. The Waring-Goldbach problems in short intervals. J Shandong Univ Nat Sci, 1997, 3: 164-225
8 Meng X M. On sums of nine almost equal prime cubes. J Shandong Univ Nat Sci, 2002, 37: 31-37
9 Vaughan R C. The Hardy-Littlewood Method. 2nd ed. Cambridge: Cambridge University Press, 1997
doi: 10.1017/CBO9780511470929
10 Zhao L L. On the Waring-Goldbach problem for fourth and sixth powers. Proc Lond Math Soc
doi: 10.1112/plms/pdt072
[1] Rui ZHANG. Slim exceptional set for sums of two squares, two cubes, and two biquadrates of primes[J]. Front. Math. China, 2019, 14(5): 1017-1035.
[2] Gaiyun GAO, Zhixin LIU. Results of Diophantine approximation by unlike powers of primes[J]. Front. Math. China, 2018, 13(4): 797-808.
[3] Meng ZHANG. Waring-Goldbach problems for unlike powers with almost equal variables[J]. Front. Math. China, 2016, 11(2): 449-460.
[4] Yuchao WANG. Values of binary linear forms at prime arguments[J]. Front. Math. China, 2015, 10(6): 1449-1459.
[5] Liqun HU. Quadratic forms connected with Fourier coefficients of Maass cusp forms[J]. Front. Math. China, 2015, 10(5): 1101-1112.
[6] Hengcai TANG, Feng ZHAO. Waring-Goldbach problem for fourth powers in short intervals[J]. Front Math Chin, 2013, 8(6): 1407-1423.
[7] Weili YAO. Estimate for exponential sums and its applications[J]. Front Math Chin, 2012, 7(4): 765-783.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed