Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2022, Vol. 17 Issue (6) : 1063-1082    https://doi.org/10.1007/s11464-021-0955-0
RESEARCH ARTICLE
Quasi-convex subsets in Alexandrov spaces with lower curvature bound
Xiaole SU1, Hongwei SUN2, Yusheng WANG1()
1. School of Mathematical Sciences (and Key Laboratory Mathematics and Complex Systems, Ministry of Education, China), Beijing Normal University, Beijing 100875, China
2. School of Mathematics Sciences, Capital Normal University, Beijing 100037, China
 Download: PDF(307 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We introduce quasi-convex subsets in Alexandrov spaces with lower curvature bound, which include not only all closed convex subsets without boundary but also all extremal subsets. Moreover, we explore several essential properties of such kind of subsets including a generalized Liberman theorem. It turns out that the quasi-convex subset is a nice and fundamental concept to illustrate the similarities and differences between Riemannian manifolds and Alexandrov spaces with lower curvature bound.

Keywords Quasi-convex subset      Alexandrov space      extremal subset      quasigeodesic     
Corresponding Author(s): Yusheng WANG   
Issue Date: 04 January 2023
 Cite this article:   
Xiaole SU,Hongwei SUN,Yusheng WANG. Quasi-convex subsets in Alexandrov spaces with lower curvature bound[J]. Front. Math. China, 2022, 17(6): 1063-1082.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0955-0
https://academic.hep.com.cn/fmc/EN/Y2022/V17/I6/1063
1 S Alexander, V Kapovitch, A Petrunin. Alexandrov Geometry. 2010, www.math.psu.edu/petrunin/
2 Y Burago, M Gromov, G Perel0man. A. D. Aleksandrov spaces with curvature bounded below. Uspekhi Mat Nank, 1992, 47 (2): 3- 51
3 G Perel0man. Elements of Morse theory on Aleksandrov spaces. Algebra i Analiz, 1993, 5(1): 232-241 (in Russian); St Petersburg Math J, 1994, 5 (1): 205- 213
4 G. A. D Perel0man. Alexandrov’s spaces with curvature bounded below II. Preprint, LOMI, 1991 (35 pp)
5 G Perel0man, A Petrunin. Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem. Algebra i Analiz, 1993, 5(1): 242-256 (in Russian); St Petersburg Math J, 1994, 5 (1): 215- 227
6 G Perel0man, A Petrunin. Quasigeodesics and gradient curves in Alexandrov spaces. Preprint, Univ of California at Berkeley, 1994, www.math.psu.edu/petrunin
7 A Petrunin. Quasigeodesics in multidimensional Alexandrov spaces. Ph D Thesis. Univ of Illinois at Urbana-Champaign, 1995 (92 pp)
8 A Petrunin. Applications of quasigeodesics and gradient curves. In: Grove K, Petersen P, eds. Comparison Geometry. Math Sci Res Inst Publ, Vol 30. Cambridge: Cambridge Univ Press, 1997, 203- 219
9 Yamaguchi T. Collapsing 4-manifolds under a lower curvature bound. arXiv: 1205.0323 T Yamaguchi. Collapsing 4-manifolds under a lower curvature bound. arXiv: 1205.0323
[1] Xueping LI. Lipschitz Gromov-Hausdorff approximations to two-dimensional closed piecewise flat Alexandrov spaces[J]. Front. Math. China, 2019, 14(2): 349-380.
[2] Fernando GALAZ-GARCÍA. A glance at three-dimensional Alexandrov spaces[J]. Front. Math. China, 2016, 11(5): 1189-1206.
[3] Yusheng WANG,Zhongyang SUN. Radius of locally convex subsets in Alexandrov spaces with curvature≥1 and radius>π/2[J]. Front. Math. China, 2014, 9(2): 417-423.
[4] Xiaochun RONG, Shicheng XU. Stability of almost submetries[J]. Front Math Chin, 2011, 6(1): 137-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed