Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    0, Vol. Issue () : 337-371    https://doi.org/10.1007/s11464-022-1014-1
SURVEY ARTICLE
Positive-instantaneous frequency and approximation
Tao QIAN()
Macao Center for Mathematical Science, Macao University of Science and Technology, Macao, China
 Download: PDF(2210 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Positive-instantaneous frequency representation for transient signals has always been a great concern due to its theoretical and practical importance, although the involved concept itself is paradoxical. The desire and practice of uniqueness of such frequency representation (decomposition) raise the related topics in approximation. During approximately the last two decades there has formulated a signal decomposition and reconstruction method rooted in harmonic and complex analysis giving rise to the desired signal representations. The method decomposes any signal into a few basic signals that possess positive instantaneous frequencies. The theory has profound relations to classical mathematics and can be generalized to signals defined in higher dimensional manifolds with vector and matrix values, and in particular, promotes kernel approximation for multi-variate functions. This article mainly serves as a survey. It also gives two important technical proofs of which one for a general convergence result (Theorem 3.4), and the other for necessity of multiple kernel (Lemma 3.7).

Expositorily, for a given real-valued signal f one can associate it with a Hardy space function F whose real part coincides with f. Such function F has the form F=f+ iHf, where H stands for the Hilbert transformation of the context. We develop fast converging expansions of F in orthogonal terms of the form

F= k =1c kB k

where Bk’s are also Hardy space functions but with the additional properties

Bk( t)= ρk (t) ei θk (t),ρ k0 ,θ k' (t) 0,a.. e

The original real-valued function f is accordingly expanded

f= k =1ρ k(t)cosθ k (t)

which, besides the properties of ρ k and θ k given above, also satisfies

H( ρkcosθk( t)= ρk (t)sin θk(t).

Real-valued functions f(t )=ρ(t)cosθ (t) that satisfy the condition

ρ 0,θ' (t) 0,H(ρcosθ) (t)= ρ(t)sinθ( t)

are called mono-components. If f is a mono-component, then the phase derivative θ '(t )is defined to be instantaneous frequency of f. The above described positive-instantaneous frequency expansion is a generalization of the Fourier series expansion. Mono-components are crucial to understand the concept instantaneous frequency. We will present several most important mono-component function classes. Decompositions of signals into mono-components are called adaptive Fourier decompositions (AFDs). We note that some scopes of the studies on the 1D mono-components and AFDs can be extended to vector-valued or even matrix-valued signals defined on higher dimensional manifolds. We finally provide an account of related studies in pure and applied mathematics.

Keywords Möbius transform      blaschke product      mono-component      hilbert transform      hardy space      inner and outer functions      adaptive fourier decomposition      rational orthogonal system      nevanlinna factorization      beurling-lax theorem      reproducing kernel hilbert space      several complex variables      clifford algebra      pre-orthogonal AFD     
Corresponding Author(s): Tao QIAN   
Issue Date: 25 May 2022
 Cite this article:   
Tao QIAN. Positive-instantaneous frequency and approximation[J]. Front. Math. China, 0, (): 337-371.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-022-1014-1
https://academic.hep.com.cn/fmc/EN/Y0/V/I/337
1 D Alpay, F Colombo, T Qian, I. Sabadini Adaptive orthonormal systems for matrix-valued functions. Proceedings of the American Mathematical Society, 2017, 145(5): 2089–2106
https://doi.org/10.1090/proc/13359
2 D Alpay, F Colombo, T Qian, I. Sabadini Adaptive Decomposition: The Case of the Drury-Arveson Space. Journal of Fourier Analysis and Applications, 2017, 23(6), 1426–1444
https://doi.org/10.1007/s00041-016-9508-4
3 A Axelsson, K I Kou, T. Qian Hilbert transforms and the Cauchy integral in Euclidean space. Studia Mathematica, 2009, 193(2): 161–187
https://doi.org/10.4064/sm193-2-4
4 L Baratchart, M Cardelli, M. Olivi Identification and rational L2 approximation, a gradient algorithm. Automatica, 1991, 27: 413–418
https://doi.org/10.1016/0005-1098(91)90092-G
5 L Baratchart, P Dang, T. Qian Hardy-Hodge Decomposition of Vector Fields in Rn. Transactions of the American Mathematical Society, 2018, 370: 2005–2022
https://doi.org/10.1090/tran/7202
6 L Baratchart, W X Mai, T. Qian Greedy Algorithms and Rational Approximation in One and Several Variables. In: Bernstein S., Kaehler U., Sabadini I., Sommen F. (eds) Modern Trends in Hypercomplex Analysis. Trends in Mathematics, 2016: 19–33
https://doi.org/10.1007/978-3-319-42529-0_2
7 S. Bell The Cauchy Transform, Potential theory and Conformal Mappings. CRC Press, Boca, Raton, 1992
8 B. Boashash Estimating and interpreting the instantaneous frequency of a signal-Part 1: Fundamentals. Proceedings of The IEEE, 1992, 80(4): 520–538
https://doi.org/10.1109/5.135376
9 J R Beltrán, P. de León Instantaneous frequency estimation and representation of the audio signal through Complex Wavelet Additive Synthesis. International Journal of Wavelets, Multiresolution and Information Processing, 2014, 12(03): 1450030
https://doi.org/10.1142/S0219691314500301
10 M T Cheng, G T. Deng Lecture notes on harmonic analysis. Peking University, 1979
11 R Coifman, J. Peyriére Phase unwinding, or invariant subspace decompositions of Hardy spaces. Journal of Fourier Analysis and Applications, 2019, 25: 684–695
https://doi.org/10.1007/s00041-018-9623-5
12 R Coifman, S. Steinerberger Nonlinear phase unwinding of functions. J Fourier Anal Appl, 2017, 23: 778–809
https://doi.org/10.1007/s00041-016-9489-3
13 R Coifman, S Steinerberger, H T. Wu Carrier frequencies, holomorphy and unwinding. SIAM J. Math. Anal., 2017, 49(6): 4838–4864
https://doi.org/10.1137/16M1081087
14 Q S. Cheng Digital Signal Processing. Peking University Press, 2003, in Chinese
15 Q H Chen, T Qian, L H. Tan Constructive Proof of Beurling-Lax Theorem, Chin. Ann. of Math., 2015, 36: 141–146
https://doi.org/10.1007/s11401-014-0870-8
16 L. Cohen Time-Frequency Analysis: Theory and Applications. Prentice Hall, 1995
17 Q H Chen, W X Mai, L M Zhang, W. Mi System identification by discrete rational atoms. Automatica, 2015, 56: 53–59
https://doi.org/10.1016/j.automatica.2015.03.022
18 F Colombo, I Sabadini, F. Sommen The Fueter primitive of bi-axially monogenic functions. Communications on Pure and Applied Analysis, 2014, 13(2): 657–672
https://doi.org/10.3934/cpaa.2014.13.657
19 F Colombo, I Sabadini, F. Sommen The Fueter mapping theorem in integral form and the ℱ-functional calculus. Mathematical Methods in the Applied Sciences, 2010, 33(17): 2050–2066
https://doi.org/10.1002/mma.1315
20 P Dang, G T Deng, T. Qian A Sharper Uncertainty principle. Journal of Functional Analysis, 2013, 265(10): 2239–2266
https://doi.org/10.1016/j.jfa.2013.07.023
21 P Dang, G T Deng, T. Qian A Tighter Uncertainty Principle For Linear Canonical Transform in Terms of Phase Derivative. IEEE Transactions on Signal Processing, 2013, 61(21): 5153–5164
https://doi.org/10.1109/TSP.2013.2273440
22 P Dang, H Liu, T. Qian Hilbert Transformation and Representation of ax + b Group. Canadian Mathematical Bulletin, 2018, 61(1): 70–84
https://doi.org/10.4153/CMB-2017-063-0
23 P Dang, H Liu, T. Qian Hilbert Transformation and rSpin(n)+Rn Group. arXiv:1711. 04519v1[math.CV], 2017
24 G Davis, S Mallet, M. Avellaneda Adaptive Greedy Approximations, Constr. Approxi., 1997, 13: 57–98
https://doi.org/10.1007/BF02678430
25 P Dang, W X Mai, T. Qian Fourier Spectrum Characterizations of Clifford Hp Spaces on R+n+1 for 1 ≤ p ≤ ∞. Journal of Mathematical Analysis and Applications, 2020, 483: 123598
https://doi.org/10.1016/j.jmaa.2019.123598
26 P Dang, T. Qian Analytic Phase Derivatives, All-Pass Filters and Signals of Minimum Phase. IEEE Transactions on Signal Processing, 2011, 59(10): 4708–4718
https://doi.org/10.1109/TSP.2011.2160260
27 P Dang, T. Qian Transient Time-Frequency Distribution based on Mono-component Decompositions. International Journal of Wavelets, Multiresolution and Information Processing, 2013, 11(3): 1350022
https://doi.org/10.1142/S0219691313500227
28 P Dang, T Qian, Q H. Chen Uncertainty Principle and Phase Amplitude Analysis of Signals on the Unit Sphere. Advances in Applied Clifford Algebras, 2017, 27(4): 2985–3013
https://doi.org/10.1007/s00006-017-0808-9
29 P Dang, T Qian, Z. You Hardy-Sobolev spaces decomposition and applications in signal analysis. J. Fourier Anal. Appl., 2011. 17(1): 36–64
https://doi.org/10.1007/s00041-010-9132-7
30 P Dang, T Qian, Y. Yang Extra-strong uncertainty principles in relation to phase derivative for signals in Euclidean spaces. Journal of Mathematical Analysis and Applications, 2016, 437(2): 912–940
https://doi.org/10.1016/j.jmaa.2016.01.039
31 G T Deng, T. Qian Rational approximation of Functions in Hardy Spaces. Complex Analysis and Operator Theory, 2016, 10(5): 903–920
https://doi.org/10.1007/s11785-015-0490-7
32 T Eisner, M. Pap Discrete orthogonality of the Malmquist Takenaka system of the upper half plane and rational interpolation. Journal of Fourier Analysis and Applications, 2014, 20(1): 1–16
https://doi.org/10.1007/s00041-013-9285-2
33 M I Falcão, J F Cruz, H R. Malonek Remarks on the generation of monogenic functions. International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering, 17, Weimar, 2006
34 P Fulcheri, P. Olivi Matrix rational H2 approximation: a gradient algorithm based on schur analysis. SIAM I. Control Optim., 1998, 36(6): 2103–2127
https://doi.org/10.1137/S0363012995284230
35 D. Gabor Theory of communication. J. IEE., 1946, 93: 429–457
https://doi.org/10.1049/ji-3-2.1946.0074
36 G I Gaudry, R Long, T. Qian A Martingale proof of L2-boundednessof Clifford-Valued Singular Integrals. Annali di Mathematica Pura Ed Applicata, 1993, 165: 369–394
https://doi.org/10.1007/BF01765857
37 G Gaudry, T Qian, S L Wang, Boundedness of singular integrals with holomorphic kernels on star-shaped closed Lipschitz curves. Colloquium Mathematicum, 1996: 133–150
https://doi.org/10.4064/cm-70-1-133-150
38 J B. Garnett Bounded Analyic Functions. Academic Press, 1981
39 N R. Gomes Compressive sensing in Clifford analysis. Doctoral Dissertation, Universidade de Aveiro (Portugal), 2015
40 S. Gong Private comminication, 2002
41 G M. Gorusin Geometrical Theory of Functions of One Complex Variable. translated by Jian-Gong Chen, 1956
42 P Ganta, G Manu, S. Anil Sooram New Perspective for Health Monitoring System. International Journal of Ethics in Engineering and Management Education, 2016
43 J A. Hummel Multivalent starlike function. J. d’ analyse Math., 1967, 18: 133–160
https://doi.org/10.1007/BF02798041
44 N E. Huang The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lndon, 1998: 903–995
https://doi.org/10.1098/rspa.1998.0193
45 A Kirkbas, A Kizilkaya, E. Bogar Optimal basis pursuit based on jaya optimization for adaptive fourier decomposition. Telecommunications and Signal Processing, 2017 40th International Conference on IEEE: 538–543
https://doi.org/10.1109/TSP.2017.8076045
46 R S Krausshar, J. Ryan Clifford and harmonic analysis on cylinders and tori. Revista Matematica Iberoamericana, 2005, 21(1): 87–110
https://doi.org/10.4171/RMI/416
47 H C Li, G T Deng, T. Qian Fourier Spectrum Characterizations of Hp Spaces on Tubes Over Cones for 1 ≦ p ≦ ∞. Complex Analysis and Operator Theory, 2018, 12: 1193–1218
https://doi.org/10.1007/s11785-017-0737-6
48 H C Li, G T Deng, T. Qian Hardy space decomposition of on the unit circle: 0¡p¡1. Complex Variables and Elliptic Equations: An International Journal, 2016, 61(4): 510–523
https://doi.org/10.1080/17476933.2015.1102901
49 Y Lei, Y Fang, L M. Zhang Iterative learning control for discrete linear system with wireless transmission based on adaptive fourier decomposition. Control Conference (CCC), 2017 36th Chinese IEEE
https://doi.org/10.23919/ChiCC.2017.8027875
50 Y Liang, L M Jia, G. Cai A new approach to diagnose rolling bearing faults based on AFD. Proceedings of the 2013 International Conference on Electrical and Information Technologies for Rail Transportation-Volume II, Springer
https://doi.org/10.1007/978-3-642-53751-6_61
51 C Li, A McIntosh, T. Qian Clifford algebras, Fourier transforms, and singular Convolution operators on Lipschitz surfaces. Revista Matematica Iberoamericana, 1994, 10(3): 665–695
https://doi.org/10.4171/RMI/164
52 C Li, A McIntosh, S. Semmes Convolution Singular Integrals on Lipschitz Surfaces. Journal of the American Mathematical Society, 1992: 455–481
https://doi.org/10.1090/S0894-0347-1992-1157291-5
53 S Li, T Qian, W X. Mai Sparse Reconstruction of Hardy Signal And Applications to Time-Frequency Distribution. International Journal of Wavelets, Multiresolution and Information Processing, 2013
54 A. Lyzzaik On a conjecture of M.S. Robertson. Proc. Am. Math. Soc., 1984, 91: 108–210
https://doi.org/10.1090/S0002-9939-1984-0735575-7
55 A McIntosh, T. Qian Convolution singular integrals on Lipschitz curves. Springer-Verlag, Lecture Notes in Maths, 1991, 1494: 142–162
https://doi.org/10.1007/BFb0087766
56 A McIntosh, T. Qian Lp Fourier multipliers along Lipschitz curves. Transactions of The American Mathematical Society, 1992, 333(1): 157–176
https://doi.org/10.1090/S0002-9947-1992-1062194-7
57 J Mashreghi, E. Fricain Blaschke products and their applications. Springer, 2013
https://doi.org/10.1007/978-1-4614-5341-3
58 W X Mai, T Qian, S. Saitoh Adaptive Decomposition of Functions with Reproducing Kernels. in preparation
59 W Mi, T. Qian Frequency Domain Identification: An Algorithm Based On Adaptive Rational Orthogonal System. Automatica, 2012, 48(6): 1154–1162
https://doi.org/10.1016/j.automatica.2012.03.002
60 Y Mo, T Qian, W. Mi Sparse Representation in Szego Kernels through Reproducing Kernel Hilbert Space Theory with Applications. International Journal of Wavelet. Multiresolution and Information Processing, 2015, 13(4): 1550030
https://doi.org/10.1142/S0219691315500307
61 W Mi, T Qian, F. Wan A Fast Adaptive Model Reduction Method Based on Takenaka-Malmquist Systems. Systems and Control Letters, 2012, 61(1): 223–230
https://doi.org/10.1016/j.sysconle.2011.10.016
62 F E Mozes, J. Szalai Computing the instantaneous frequency for an ECG signal. Scientific Bulletin of the “Petru Maior” University of Targu Mures, 2012, 9(2): 28
63 M. Nahon Phase Evaluation and Segmentation. Ph.D. Thesis, Yale University, 2000
64 A. Perotti Directional quaternionic Hilbert operators. Hypercomplex analysis, Birkhüser Basel, 2008: 235–258
https://doi.org/10.1007/978-3-7643-9893-4_15
65 B. Picinbono On instantaneous amplitude and phase of signals. IEEE Transactions on Signal Processing, 1997, 45(3): 552–560
https://doi.org/10.1109/78.558469
66 T. Qian Singular integrals with holomorphic kernels and Fourier multipliers on starshape Lipschitz curves. Studia Mathematica, 1997, 123(3): 195–216
https://doi.org/10.4064/sm-123-3-195-216
67 T. Qian Characterization of boundary values of functions in Hardy spaces with applications in signal analysis. Journal of Integral Equations and Applications, 2005, 17(2): 159–198
https://doi.org/10.1216/jiea/1181075323
68 T. Qian Analytic Signals and Harmonic Measures. Journal of Mathematical Analysis and Applications, 2006, 314(2): 526–536
https://doi.org/10.1016/j.jmaa.2005.04.003
69 T. Qian Mono-components for decomposition of signals. Mathematical Methods in the Applied Sciences, 2006, 29(10): 1187–1198
https://doi.org/10.1002/mma.721
70 T. Qian Boundary Derivatives of the Phases of Inner and Outer Functions and Applications. Mathematical Methods in the Applied Sciences, 2009, 32: 253–263
https://doi.org/10.1002/mma.1032
71 T. Qian Intrinsic mono-component decomposition of functions: An advance of Fourier theory. Mathematical Methods in Applied Sciences, 2010, 33: 880–891
https://doi.org/10.1002/mma.1214
72 T. Qian Two-Dimensional Adaptive Fourier Decomposition. Mathematical Methods in the Applied Sciences, 2016, 39(10): 2431–2448
https://doi.org/10.1002/mma.3649
73 T. Qian Adaptive Fourier Decomposition: A Mathematical Method Through Complex Analysis. Harmonic Analysis and Signal Analysis, Science Press (in Chinese), 2015
74 T Qian, P T. Li Singular Integrals and Fourier Theory. Science Press (in Chinese), 2017
75 T. Qian Fourier analysis on starlike Lipschitz surfaces. Journal of Functional Analysis, 2001, 183: 370–412
https://doi.org/10.1006/jfan.2001.3750
76 T. Qian Cyclic AFD Algorithm for Best Approximation by Rational Functions of Given Order. Mathematical Methods in the Applied Sciences, 2014, 37(6): 846–859
https://doi.org/10.1002/mma.2843
77 T Qian, Q H Chen, L H. Tan Rational Orthogonal Systems are Schauder Bases. Complex Variables and Elliptic Equations, 2014, 59(6): 841–846
https://doi.org/10.1080/17476933.2013.787532
78 T Qian, Q H Chen, L Q. Li Analytic unit quadrature signals with non-linear phase. Physica D: Nonlinear Phenomena, 2005, 303: 80–87
https://doi.org/10.1016/j.physd.2005.03.005
79 T Qian, J S. Huang AFD on the n-Torus. in preparation
80 T Qian, I T Ho, I T Leong, Y B. Wang Adaptive decomposition of functions into pieces of non-negative instantaneous frequencies. International Journal of Wavelets, Multiresolution and Information Processing, 2010, 8(5): 813–833
https://doi.org/10.1142/S0219691310003791
81 T Qian, H Li, M. Stessin Comparison of Adaptive Mono-component Decompositions. Nonlinear Analysis: Real World Applications, 2013, 14(2): 1055–1074
https://doi.org/10.1016/j.nonrwa.2012.08.017
82 T Qian, L H. Tan Characterizations of Mono-components: the Blaschke and Starlike types. Complex Analysis and Operator Theory, 2015: 1–17
https://doi.org/10.1007/s11785-015-0491-6
83 T Qian, L H. Tan Backward shift invariant subspaces with applications to band preserving and phase retrieval problems. Mathematical Methods in the Applied Sciences, 2016, 39(6): 1591–1598
https://doi.org/10.1002/mma.3591
84 T Qian, Y B. Wang Adaptive Fourier Series-A Variation of Greedy Algorithm. Advances in Computational Mathematics, 2011, 34(3): 279–293
https://doi.org/10.1007/s10444-010-9153-4
85 T Qian, E. Wegert Optimal Approximation by Blaschke Forms. Complex Variables and Elliptic Equations, 2013, 58(1): 123–133
https://doi.org/10.1080/17476933.2011.557152
86 T Qian, J X. SproessigW,Wang Adaptive Fourier decomposition of functions in quaternionic Hardy spaces. Mathematical Methods in the Applied Sciences, 2012, 35(1): 43–64
https://doi.org/10.1002/mma.1532
87 T Qian, L H Tan, Y B. Wang Adaptive Decomposition by Weighted Inner Functions: A Generalization of Fourier Serie. J. Fourier Anal. Appl., 2011, 17(2): 175–190
https://doi.org/10.1007/s00041-010-9154-1
88 T Qian, J X. Wang Adaptive Decomposition of Functions by Higher Order Szegö Kernels I: A Method for Mono-component Decomposition. submitted to Acta Applicanda Mathematicae
89 T Qian, J Z. Wang Gradient Descent Method for Best Blaschke-Form Approximation of Function in Hardy Space. http://arxiv.org/abs/1803.08422
90 T Qian, J X. SproessigW,Wang Adaptive Fourier decomposition of functions in quaternionic Hardy spaces. Mathematical Methods in the Applied Sciences, 2012, 35: 43–64
https://doi.org/10.1002/mma.1532
91 T Qian, J X Wang, Y. Yang Matching Pursuits among Shifted Cauchy Kernels in Higher-Dimensional Spaces. Acta Mathematica Scientia, 2014, 34(3): 660–672
https://doi.org/10.1016/S0252-9602(14)60038-2
92 T Qian, R Wang, Y S Xu, H Z. Zhang Orthonormal Bases with Nonlinear Phase. Advances in Computational Mathematics, 2010, 33: 75–95
https://doi.org/10.1007/s10444-009-9120-0
93 T Qian, Y S Xu, D Y Yan, L X Yan, B. Yu Fourier Spectrum Characterization of Hardy Spaces and Applications. Proceedings of the American Mathematical Society, 2009, 137(3): 971–980
https://doi.org/10.1090/S0002-9939-08-09544-0
94 T Qian, Y. Yang Hilbert Transforms on the Sphere With the Clifford Algebra Setting. Journal of Fourier Analysis and Applications, 2019, 15: 753–774
https://doi.org/10.1007/s00041-009-9062-4
95 T. Qian L M Zhang, Z X. Li Algorithm of Adaptive Fourier Decomposition. IEEE Transaction on Signal Processing, Dec., 2011, 59(12): 5899–5902
https://doi.org/10.1109/TSP.2011.2168520
96 W Qu, P. Dang Rational Approximation in a Class of Weighted Hardy Spaces. Complex Analysis and Operator Theory volume, 2019, 13: 1827–1852
https://doi.org/10.1007/s11785-018-0862-x
97 L. Salomon Analyse de l’anisotropie dans des images texturées, 2016
98 F Sakaguchi, M. Hayashi General theory for integer-type algorithm for higher order differential equations. Numerical Functional Analysis and Optimization, 2011, 32(5): 541–582
https://doi.org/10.1080/01630563.2011.557917
99 F Sakaguchi, M. Hayashi Differentiability of eigenfunctions of the closures of differential operators with rational coefficient functions, arXiv:0903.4852, 2009
100 F Sakaguchi, M. Hayashi Practical implementation and error bound of integer-type algorithm for higher-order differential equations. Numerical Functional Analysis and Optimization, 2011, 32(12): 1316–1364
https://doi.org/10.1080/01630563.2011.595602
101 F Sakaguchi, M. Hayashi Integer-type algorithm for higher order differential equations by smooth wavepackets. arXiv:0903.4848, 2009
102 D Schepper, T Qian, F Sommen, J X. Wang Holomorphic Approximation of L2-functions on the Unit Sphere in R3. Journal of Mathematical Analysis and Applications, 2014, 416(2): 659–671
https://doi.org/10.1016/j.jmaa.2014.02.065
103 R C Sharpley, V. Vatchev Analysis of intrinsic mode functions. Constructive Approximation, 2006, 24: 17–47
https://doi.org/10.1007/s00365-005-0603-z
104 E M Stein, G. Weiss Introduction to Fourirer Analysis on Euclidean Spaces. Princeton University Press, Princeton, New Jersey, 1971
105 L H Tan, L X Shen, L H. Yang Rational orthogonal bases satisfying the Bedrosian Identity. Advances in Computational Mathematics, 2010, 33: 285–303
https://doi.org/10.1007/s10444-009-9133-8
106 L H Tan, L H Yang, D R. Huang The structure of instantaneous frequencies of periodic analytic signals. Sci. China Math., 2010, 53(2): 347–355
https://doi.org/10.1007/s11425-009-0093-8
107 L H Tan, T. Qian Backward Shift Invariant Subspaces With Applications to Band Preserving and Phase Retrieval Problems
108 L H Tan, T. Qian Extracting Outer Function Part from Hardy Space Function. Science China Mathematics, 2017, 60(11): 2321–2336
https://doi.org/10.1007/s11425-017-9169-5
109 L H Tan, T Qian, Q H. Chen New aspects of Beurling Lax shift invariant subspaces. Applied Mathematics and Computation, 2015: 257–266
https://doi.org/10.1016/j.amc.2014.12.147
110 V. Vatchev A class of intrinsic trigonometric mode polynomials. International Conference Approximation Theory. Springer, Cham, 2016: 361–373
https://doi.org/10.1007/978-3-319-59912-0_18
111 D V. Vliet Analytic signals with non-negative instantaneous frequency. Journal of Integral Equations and Applications, 2009, 21: 95–111
https://doi.org/10.1216/JIE-2009-21-1-95
112 J L. Walsh Interpolation and Approximation by Rational Functions in the Complex Plane. American Mathematical Society: Providence, RI, 1969
113 S L. Wang Simple Proofs of the Bedrosian Equality for the Hilbert Transform. Science in China, Series A: Mathematics, 2009, 52(3): 507–510
https://doi.org/10.1007/s11425-009-0001-2
114 J X Wang, T. Qian Approximation of monogenic functions by higher order Szegö kernels on the unit ball and the upper half space. Sciences in China: Mathematics, 2014, 57(9): 1785–1797
https://doi.org/10.1007/s11425-013-4710-1
115 G Weiss, M. Weiss A derivation of the main results of the theory of Hp-spaces. Rev. Un. Mat. Argentina, 1962, 20: 63–71
116 W. Wu Applications in Digital Image Processing of Octonions Analysis and the Qian Method. South China Normal University, 2014
117 Z Wang, J N da Cruz, F. Wan Adaptive Fourier decomposition approach for lung-heart sound separation. Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA). 2015 IEEE International Conference on. IEEE, 2015
https://doi.org/10.1109/CIVEMSA.2015.7158631
118 M Z Wu, Y Wang, X M. Li Fast Algorithm of The Qian Method in Digital Watermarking. Computer Engineering and Desining, 2016
119 M Z Wu, Y Wang, X M. Li Improvement of 2D Qian Method and its Application in Image Denoising. South China Normal University, 2016
120 Y S. Xu Private comminication, 2005
121 Y Yang, T Qian, F. Sommen Phase Derivative of Monogenic Signals in Higher Dimensional Spaces. Complex Analysis and Operator Theory, 2012, 6(5): 987–1010
https://doi.org/10.1007/s11785-011-0210-x
122 B Yu, H Z. Zhang The Bedrosian Identity and Homogeneous Semi-convolution Equations. Journal of Integral Equations and Applications, 2008, 20: 527–568
https://doi.org/10.1216/JIE-2008-20-4-527
123 L. Zhang A New Time-Frequency Speech Analysis Approach Based On Adaptive Fourier Decomposition. World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2013
124 L M Zhang, N Liu, P. Yu A novel instantaneous frequency algorithm and its application in stock index movement prediction. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(4): 311–318
https://doi.org/10.1109/JSTSP.2012.2199079
125 L M Zhang, T Qian, W X Mai, P. Dang Adaptive Fourier decomposition-based Dirac type time-frequency distribution. Mathematical Methods in the Applied Sciences, 2017, 40(8): 2815–2833
https://doi.org/10.1002/mma.4199
[1] Nguyen Anh DAO. Hardy factorization in terms of fractional commutators in Lorentz spaces[J]. Front. Math. China, 2022, 17(5): 853-873.
[2] Long HUANG, Der-Chen CHANG, Dachun YANG. Fourier transform of anisotropic mixed-norm Hardy spaces[J]. Front. Math. China, 2021, 16(1): 119-139.
[3] Xianjie YAN, Dachun YANG, Wen YUAN. Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces[J]. Front. Math. China, 2020, 15(4): 769-806.
[4] Qingquan DENG, Djalal Eddine GUEDJIBA. Weighted product Hardy space associated with operators[J]. Front. Math. China, 2020, 15(4): 649-683.
[5] Fanghui LIAO, Zhengyang LI. Hardy space estimates for bi-parameter Littlewood-Paley square functions[J]. Front. Math. China, 2020, 15(2): 333-349.
[6] Jiecheng CHEN, Dashan FAN, Meng WANG. Oscillatory hyper Hilbert transforms along variable curves[J]. Front. Math. China, 2019, 14(4): 673-692.
[7] Xing FU. Equivalent characterizations of Hardy spaces with variable exponent via wavelets[J]. Front. Math. China, 2019, 14(4): 737-759.
[8] Xiaomei WU, Dashan FAN. Oscillatory hyper-Hilbert transform along curves on modulation spaces[J]. Front. Math. China, 2018, 13(3): 647-666.
[9] Mehmet GÜRDAL, Ula¸s YAMANCI, Mübariz GARAYEV. Some results for operators on a model space[J]. Front. Math. China, 2018, 13(2): 287-300.
[10] Hui ZHANG, Chunyan QI, Baode LI. Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications[J]. Front. Math. China, 2017, 12(4): 993-1022.
[11] Jiecheng CHEN,Belay Mitiku DAMTEW,Xiangrong ZHU. Oscillatory hyper Hilbert transforms along general curves[J]. Front. Math. China, 2017, 12(2): 281-299.
[12] Dachun YANG,Dongyong YANG. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schr?dinger operators[J]. Front. Math. China, 2015, 10(5): 1203-1232.
[13] Mingju LIU,Deming LI. Boundedness of some multipliers on stratified Lie groups[J]. Front. Math. China, 2015, 10(1): 137-146.
[14] Dachun YANG, Dongyong YANG. Boundedness of Calderón-Zygmund operators with finite non-doubling measures[J]. Front Math Chin, 2013, 8(4): 961-971.
[15] Xiaona CUI, Rui WANG, Dunyan YAN. Double Hilbert transform on D(?2)[J]. Front Math Chin, 2013, 8(4): 783-799.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed