1 |
I S Alalouf, G P H Styan. Characterizations of estimability in the general linear model. Ann Statist 1979; 7(1): 194–200
|
2 |
H Bolfarine, J Rodrigues. On the simple projection predictor in finite populations. Austral J Statist 1988; 30(3): 338–341
|
3 |
H Bolfarine, S Zacks, S N Elian, J Rodrigues. Optimal prediction of the finite population regression coefficient. Sankhya Ser B 1994; 56(1): 1–10
|
4 |
H Drygas. Estimation and prediction for linear models in general spaces. Math Operationsforsch Statist 1975; 6(2): 301–324
|
5 |
S J Gan, Y Q Sun, Y G Tian. Equivalence of predictors under real and over-parameterized linear models. Comm Statist Theory Methods 2017; 46(11): 5368–5383
|
6 |
A S Goldberger. Best linear unbiased prediction in the generalized linear regression models. J Amer Statist Assoc 1962; 57: 369–375
|
7 |
C R Henderson. Best linear unbiased estimation and prediction under a selection model. Biometrics 1975; 31(2): 423–447
|
8 |
J M Jiang. A derivation of BLUP—best linear unbiased predictor. Statist Probab Lett 1997; 32(3): 321–324
|
9 |
X Q Liu, J Y Rong, X Y Liu. Best linear unbiased prediction for linear combinations in general mixed linear models. J Multivariate Anal 2008; 99(8): 1503–1517
|
10 |
C L Lu, S J Gan, Y G Tian. Some remarks on general linear model with new regressors. Statist Probab Lett 2015; 97: 16–24
|
11 |
C L Lu, Y Q Sun, Y G Tian. A comparison between two competing fixed parameter constrained general linear models with new regressors. Statistics 2018; 52(4): 769–781
|
12 |
G Marsaglia, G P H Styan. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 1974/1975; 2: 269–292
|
13 |
R Penrose. A generalized inverse for matrices. Proc Cambridge Philos Soc 1955; 51: 406–413
|
14 |
S PuntanenG P H StyanJ Isotalo. Matrix Tricks for Linear Statistical Models: Our Personal Top Twenty. Heidelberg: Springer, 2011
|
15 |
C R Rao. Unified theory of linear estimation. Sankhya Ser A 1971; 33: 371–394
|
16 |
C R Rao. Representations of best linear unbiased estimators in the Gauss-Markoff model with a singular dispersion matrix. J Multivariate Anal 1973; 3: 276–292
|
17 |
C R Rao. A lemma on optimization of a matrix function and a review of the unified theory of linear estimation, In: Statistical Data Analysis and Inference (Neuchatel, 1989). Amsterdam: North-Holland 1989; 397–417
|
18 |
C-E Särndal, R L Wright. Cosmetic form of estimators in survey sampling. Scand J Statist 1984; 11(3): 146–156
|
19 |
Y G Tian. A new derivation of BLUPs under random-effects model. Metrika 2015; 78(8): 905–918
|
20 |
Y G Tian. A matrix handling of predictions under a general linear random-effects model with new observations. Electron J Linear Algebra 2015; 29: 30–45
|
21 |
Y G Tian. Solutions of a constrained Hermitian matrix-valued function optimization problem with applications. Oper Matrices 2016; 10(4): 967–983
|
22 |
Y G Tian, B Jiang. A new analysis of the relationships between a general linear model and its mis-specified forms. J Korean Statist Soc 2017; 46(2): 182–193
|
23 |
S H Yu, C Z He. Comparison of general Gauss-Markov models in estimable subspace. Acta Math Appl Sinica 1997; 20(4): 580–586
|
24 |
S H Yu, C Z He. Optimal prediction in finite populations. Appl Math J Chinese Univ Ser A 2000; 15(2): 199–205
|
25 |
S H Yu, X L Liang. The simple projection predictor in finite populations with arbitrary rank. Mathematics in Economics 2001; 18(4): 49–52
|