Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (5) : 1233-1242    https://doi.org/10.1007/s11464-015-0466-y
RESEARCH ARTICLE
Classification of simple weight modules for super-Virasoro algebra with a finite-dimensional weight space
Xiufu ZHANG()
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
 Download: PDF(106 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

There are two extensions of Virasoro algebra with particular importance in superstring theory: the Ramond algebra and the Neveu-Schwarz algebra, which are Z2-graded extensions of the Virasoro algebra. In this paper, we show that the support of a simple weight module over the Ramond algebra with an infinite-dimensional weight space coincides with the weight lattice and that all intersections of non-trivial weight spaces and odd part or even part of the module are infinite-dimensional. This result together with the one that we have obtained over the Neveu-Schwarz algebra generalizes the result for the Virasoro algebra to the super-Virasoro algebras.

Keywords Super-Virasoro algebra      Ramond algebra      weight module      Harish-Chandra module     
Corresponding Author(s): Xiufu ZHANG   
Issue Date: 24 June 2015
 Cite this article:   
Xiufu ZHANG. Classification of simple weight modules for super-Virasoro algebra with a finite-dimensional weight space[J]. Front. Math. China, 2015, 10(5): 1233-1242.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0466-y
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I5/1233
1 Astashkevich A. On the structure of Verm modules over Virasoro algebra and Neveu-Schwarz algebras. Comm Math Phys, 1997, 186: 531-562
https://doi.org/10.1007/s002200050119
2 Chen H, Guo X, Zhao K. Tensor Product weight modules over the Virasoro algebra. J Lond Math Soc (2), 2013, 88: 829-834
3 Feigin B, Fuchs D. Representations of the Virasoro algebra. In: Representations of Lie groups and related topics. Adv Stud Contemp Math, Vol 7. New York: Gordon and Breach, 1990, 465-554
4 Guo X, Lu R, Zhao K. Irreducible modules over the Virasoro algebra. Doc Math, 2011, 16: 709-721
5 Guo X, Lu R, Zhao K. Fraction representations and highest-weight-like representations of the Virasoro algebra. J Algebra, 2013, 387: 68-86
https://doi.org/10.1016/j.jalgebra.2013.04.012
6 Li J, Su Y. Irreducible weight modules over the twisted Schr?dinger-Virasoro algebra. Acta Math Sin (Engl Ser), 2009, 25(4): 531-536
https://doi.org/10.1007/s10114-009-7326-1
7 Liu G, Lu R, Zhao K. A class of simple weight Virasoro modules. arXiv: 1211.0998
8 Lu R, Zhao K. Irreducible Virasoro modules from irreducible Weyl modules. J Algebra, 2014, 414: 271-287
https://doi.org/10.1016/j.jalgebra.2014.04.029
9 Lu R, Zhao K. A family of simple weight modules over the Virasoro algebra. arXiv: 1303.0702
10 Martin C, Piard A. Indecomposable modules over the Virasoro Lie algebra and a conjecture of V. Kac. Comm Math Phys, 1991, 137(1): 109-132
https://doi.org/10.1007/BF02099118
11 Mathieu O. Classification of Harish-Chandra modules over the Virasoro Lie algebra. Invent Math, 1992, 107: 225-234
https://doi.org/10.1007/BF01231888
12 Mazorchuk V, Zhao K. Classification of simple weight Virasoro modules with a finitedimensional weight space. J Algebra, 2007, 307: 209-214
https://doi.org/10.1016/j.jalgebra.2006.05.007
13 Mazorchuk V, Zhao K. Simple Virasoro modules which are locally finite over a positive part. Selecta Math (N S), 2014, 20(3): 839-854
https://doi.org/10.1007/s00029-013-0140-8
14 Shen R, Su Y. Classification of irreducible weight modules with a finite-dimensional weight space over twisted Heisenberg-Virasoro algebra. Acta Math Sin (Engl Ser), 2007, 23(1): 189-192
https://doi.org/10.1007/s10114-005-0807-y
15 Su Y. A classification of indecomposable sl2(?)-modules and a conjecture of Kac on irreducible modules over the Virasoro algebra. J Algebra, 1993, 161: 33-46
16 Su Y. Classification of Harish-Chandra modules over the super-Virasoro algebras. Comm Algebra, 1995, 23: 3653-3675
https://doi.org/10.1080/00927879508825424
17 Tan H, Zhao K. Irreducible Virasoro modules from tensor products (II). J Algebra, 2013, 394: 357-373
https://doi.org/10.1016/j.jalgebra.2013.07.023
18 Zhang H. A class of representations over the Virasoro algebra. J Algebra, 1997, 190: 1-10
https://doi.org/10.1006/jabr.1996.6565
19 Zhang X. Tensor product weight representations of the Neveu-Schwarz algebra. Comm Algebra (to appear)
20 Zhang X, Xia Z. Classification of simple weight modules for the Neveu-Schwarz algebra with a finite-dimensional weight space. Comm Algebra, 2012, 40: 2161-2170
https://doi.org/10.1080/00927872.2011.575908
21 Zhao K. Representations of the Virasoro algebra I. J Algebra, 1995, 176: 882-907
https://doi.org/10.1006/jabr.1995.1277
[1] Zhuo ZHANG, Jixia YUAN, Xiaomin TANG. Super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras[J]. Front. Math. China, 2020, 15(6): 1295-1306.
[2] Dong LIU, Xiufu ZHANG. Tensor product weight modules of Schrödinger-Virasoro algebras[J]. Front. Math. China, 2019, 14(2): 381-393.
[3] Ruipu BAI, Zhenheng LI, Weidong WANG. Infinite-dimensional 3-Lie algebras and their connections to Harish-Chandra modules[J]. Front. Math. China, 2017, 12(3): 515-530.
[4] Xue CHEN. Classification of irreducible non-zero level quasifinite modules over twisted affine Nappi-Witten algebra[J]. Front. Math. China, 2016, 11(2): 269-277.
[5] Genqiang LIU,Yueqiang ZHAO. Irreducible A(1)1 -modules from modules over two-dimensional non-abelian Lie algebra[J]. Front. Math. China, 2016, 11(2): 353-363.
[6] Hengyun YANG. Lie super-bialgebra structures on super-Virasoro algebra[J]. Front Math Chin, 2009, 4(2): 365-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed