Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (3) : 511-520    https://doi.org/10.1007/s11464-015-0467-x
RESEARCH ARTICLE
Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs
Changjiang BU(),Yamin FAN,Jiang ZHOU
College of Science, Harbin Engineering University, Harbin 150001, China
 Download: PDF(117 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We show that a connected uniform hypergraph G is odd-bipartite if and only if G has the same Laplacian and signless Laplacian Z-eigenvalues. We obtain some bounds for the largest (signless) Laplacian Z-eigenvalue of a hypergraph. For a k-uniform hyperstar with d edges (2dk≥3), we show that its largest (signless) Laplacian Z-eigenvalue is d.

Keywords Hypergraph eigenvalue      Laplacian tensor      signless Laplacian tensor      Z-eigenvalue     
Corresponding Author(s): Changjiang BU   
Issue Date: 17 May 2016
 Cite this article:   
Changjiang BU,Yamin FAN,Jiang ZHOU. Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs[J]. Front. Math. China, 2016, 11(3): 511-520.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0467-x
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I3/511
1 Bu C, Zhou J, Wei Y. E-cospectral hypergraphs and some hypergraphs determined by their spectra. Linear Algebra Appl, 2014, 459: 397–403
https://doi.org/10.1016/j.laa.2014.07.020
2 Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436: 3268–3292
https://doi.org/10.1016/j.laa.2011.11.018
3 Cooper J, Dutle A. Computing hypermatrix spectra with the Poisson product formula. Linear Multilinear Algebra, 2015, 63: 956–970
https://doi.org/10.1080/03081087.2014.910207
4 Cvetković D, Rowlinson P, Simić S. An Introduction to the Theory of Graph Spectra. Cambridge: Cambridge University Press, 2010
5 Hu S, Qi L. The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph. Discrete Appl Math, 2014, 169: 140–151
https://doi.org/10.1016/j.dam.2013.12.024
6 Hu S, Qi L, Xie J. The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph. Linear Algebra Appl, 2015, 469: 1–27
https://doi.org/10.1016/j.laa.2014.11.020
7 Khan M, Fan Y. On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs. arXiv: 1408.3303
8 Lim L H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multisensor Adaptive Processing. 2005, 129–132
9 Pearson K, Zhang T. On spectral hypergraph theory of the adjacency tensor. Graphs Combin, 2014, 30: 1233–1248
https://doi.org/10.1007/s00373-013-1340-x
10 Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
https://doi.org/10.1016/j.jsc.2005.05.007
11 Qi L. H+-eigenvalues of Laplacian and signless Laplacian tensors. Commun Math Sci, 2014, 12: 1045–1064
https://doi.org/10.4310/CMS.2014.v12.n6.a3
12 Shao J. A general product of tensors with applications. Linear Algebra Appl, 2013, 439: 2350–2366
https://doi.org/10.1016/j.laa.2013.07.010
13 Shao J, Qi L, Hu S. Some new trace formulas of tensors with applications in spectral hypergraph theory. Linear Multilinear Algebra, 2015, 63: 971–992
https://doi.org/10.1080/03081087.2014.910208
14 Shao J, Shan H, Wu B. Some spectral properties and characterizations of connected odd-bipartite uniform hypergraphs. Linear Multilinear Algebra, DOI: 10.1080/03081087.2015.1009061
https://doi.org/10.1080/03081087.2015.1009061
15 Song Y, Qi L. Spectral properties of positively homogeneous operators induced by higher order tensors. SIAM J Matrix Anal Appl, 2013, 34: 1581–1595
https://doi.org/10.1137/130909135
16 Xie J, Chang A. On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs. Linear Algebra Appl, 2013, 439: 2195–2204
https://doi.org/10.1016/j.laa.2013.07.016
17 Zhou J, Sun L, Wang W, Bu C. Some spectral properties of uniform hypergraphs. Electron J Combin, 2014, 21: P4.24
[1] Jun HE, Yanmin LIU, Junkang TIAN, Xianghu LIU. Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs[J]. Front. Math. China, 2019, 14(1): 17-24.
[2] Junjie YUE,Liping ZHANG,Mei LU. Largest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths[J]. Front. Math. China, 2016, 11(3): 623-645.
[3] Jinshan XIE, An CHANG. H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph[J]. Front Math Chin, 2013, 8(1): 107-127.
[4] Liqun QI, Hui-Hui DAI, Deren HAN. Conditions for strong ellipticity and M-eigenvalues[J]. Front Math Chin, 2009, 4(2): 349-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed