Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (3) : 619-629    https://doi.org/10.1007/s11464-019-0771-y
RESEARCH ARTICLE
Interaction solutions to Hirota-Satsuma-Ito equation in (2+ 1)-dimensions
Wen-Xiu MA1,2,3,4,5,6()
1. Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
2. Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
3. Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA
4. College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
5. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
6. Department of Mathematical Sciences, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
 Download: PDF(2167 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Abundant exact interaction solutions, including lump-soliton, lumpkink, and lump-periodic solutions, are computed for the Hirota-Satsuma-Ito equation in (2+1)-dimensions, through conducting symbolic computations with Maple. The basic starting point is a Hirota bilinear form of the Hirota-Satsuma-Ito equation. A few three-dimensional plots and contour plots of three special presented solutions are made to shed light on the characteristic of interaction solutions.

Keywords Symbolic computation      lump solution      interaction solution     
Corresponding Author(s): Wen-Xiu MA   
Issue Date: 10 July 2019
 Cite this article:   
Wen-Xiu MA. Interaction solutions to Hirota-Satsuma-Ito equation in (2+ 1)-dimensions[J]. Front. Math. China, 2019, 14(3): 619-629.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0771-y
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I3/619
1 M J Ablowitz, P A Clarkson. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge Univ Press, 1991
https://doi.org/10.1017/CBO9780511623998
2 P J Caudrey. Memories of Hirota's method: application to the reduced Maxwell-Bloch system in the early 1970s. Philos Trans Roy Soc A, 2011, 369: 1215–1227
https://doi.org/10.1098/rsta.2010.0337
3 S T Chen, W X Ma. Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation. Front Math China, 2018, 13: 525–534
https://doi.org/10.1007/s11464-018-0694-z
4 H H Dong, Y Zhang, X E Zhang. The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation. Commun Nonlinear Sci Numer Simul, 2016, 36: 354–365
https://doi.org/10.1016/j.cnsns.2015.12.015
5 B Dorizzi, B Grammaticos, A Ramani, P Winternitz. Are all the equations of the Kadomtsev-Petviashvili hierarchy integrable? J Math Phys, 1986, 27: 2848–2852
https://doi.org/10.1063/1.527260
6 P G Drazin, R S Johnson. Solitons: An Introduction. Cambridge: Cambridge Univ Press, 1989
https://doi.org/10.1017/CBO9781139172059
7 C R Gilson, J J C Nimmo. Lump solutions of the BKP equation. Phys Lett A, 1990, 147: 472–476
https://doi.org/10.1016/0375-9601(90)90609-R
8 M Z Harun-Or-Roshid, Ali. Lump solutions to a Jimbo-Miwa like equation. arXiv: 1611.04478
9 J Hietarinta. Introduction to the Hirota bilinear method. In: Kosmann-Schwarzbach Y, Grammaticos B, Tamizhmani K M, eds. Integrability of Nonlinear Systems. Lecture Notes in Phys, Vol 495. Berlin: Springer, 1997, 95–103
https://doi.org/10.1007/BFb0113694
10 R Hirota. The Direct Method in Soliton Theory. New York: Cambridge Univ Press. 2004
https://doi.org/10.1017/CBO9780511543043
11 N H Ibragimov. A new conservation theorem. J Math Anal Appl, 2007, 333: 311–328
https://doi.org/10.1016/j.jmaa.2006.10.078
12 K Imai. Dromion and lump solutions of the Ishimori-I equation. Prog Theor Phys, 1997, 98: 1013–1023
https://doi.org/10.1143/PTP.98.1013
13 D J Kaup. The lump solutions and the Bäcklund transformation for the threedimensional three-wave resonant interaction. J Math Phys, 1981, 22: 1176–1181
https://doi.org/10.1063/1.525042
14 T C Kofane, M Fokou, A Mohamadou, E Yomba. Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation. Eur Phys J Plus, 2017, 132: 465
https://doi.org/10.1140/epjp/i2017-11747-6
15 B Konopelchenko, W Strampp. The AKNS hierarchy as symmetry constraint of the KP hierarchy. Inverse Problems, 1991, 7: L17–L24
https://doi.org/10.1088/0266-5611/7/2/002
16 X Y Li, Q L Zhao. A new integrable symplectic map by the binary nonlinearization to the super AKNS system. J Geom Phys, 2017, 121: 123–137
https://doi.org/10.1016/j.geomphys.2017.07.010
17 X Y Li, Q L Zhao, Y X Li, H H Dong. Binary Bargmann symmetry constraint associated with 3 × 3 discrete matrix spectral problem. J Nonlinear Sci Appl, 2015, 8: 496–506
https://doi.org/10.22436/jnsa.008.05.05
18 J G Liu, L Zhou, Y He. Multiple soliton solutions for the new (2+ 1)-dimensional Korteweg-de Vries equation by multiple exp-function method. Appl Math Lett, 2018, 80: 71–78
https://doi.org/10.1016/j.aml.2018.01.010
19 X Lü, S T Chen, W X Ma. Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation. Nonlinear Dynam, 2016, 86: 523–534
https://doi.org/10.1007/s11071-016-2905-z
20 X Lü, W X Ma, S T Chen, C M Khalique. A note on rational solutions to a Hirota-Satsuma-like equation. Appl Math Lett, 2016, 58: 13–18
https://doi.org/10.1016/j.aml.2015.12.019
21 X Lü, W X Ma, Y Zhou, C M Khalique. Rational solutions to an extended Kadomtsev-Petviashvili like equation with symbolic computation. Comput Math Appl, 2016, 71: 1560–1567
https://doi.org/10.1016/j.camwa.2016.02.017
22 W X Ma. Wronskian solutions to integrable equations. Discrete Contin Dyn Syst, 2009, Suppl: 506–515
23 W X Ma. Conservation laws of discrete evolution equations by symmetries and adjoint symmetries. Symmetry, 2015, 7: 714–725
https://doi.org/10.3390/sym7020714
24 W X Ma. Lump solutions to the Kadomtsev-Petviashvili equation. Phys Lett A, 2015, 379: 1975–1978
https://doi.org/10.1016/j.physleta.2015.06.061
25 W X Ma. Lump-type solutions to the (3+1)-dimensional Jimbo-Miwa equation. Int J Nonlinear Sci Numer Simul, 2016, 17: 355–359
https://doi.org/10.1515/ijnsns-2015-0050
26 W X Ma. Conservation laws by symmetries and adjoint symmetries. Discrete Contin Dyn Syst Ser S, 2018, 11: 707–721
27 W X Ma. Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system. J Geom Phys, 2018, 132: 45–54
https://doi.org/10.1016/j.geomphys.2018.05.024
28 W X Ma. Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs. J Geom Phys, 2018, 133: 10–16
https://doi.org/10.1016/j.geomphys.2018.07.003
29 W X Ma. Diverse lump and interaction solutions to linear PDEs in (3+1)-dimensions. East Asian J Appl Math, 2019, 9: 185–194
https://doi.org/10.4208/eajam.100218.300318
30 W X Ma. Lump and interaction solutions to linear (4+ 1)-dimensional PDEs. Acta Math Sci Ser B Engl Ed, 2019, 39: 498–508
31 W X Ma. A search for lump solutions to a combined fourth-order nonlinear PDE in (2+ 1)-dimensions. J Appl Anal Comput, 2019, 9(to appear)
32 W X Ma, E G Fan. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011, 61: 950–959
https://doi.org/10.1016/j.camwa.2010.12.043
33 W X Ma, J Li, C M Khalique. A study on lump solutions to a generalized Hirota-Satsuma-Ito equation in (2+ 1)-dimensions. Complexity, 2018, 2018: 9059858
https://doi.org/10.1155/2018/9059858
34 W X Ma, Z Y Qin, X Lü. Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dynam, 2016, 84: 923–931
https://doi.org/10.1007/s11071-015-2539-6
35 W X Ma, X L Yong, H Q Zhang. Diversity of interaction solutions to the (2+ 1)-dimensional Ito equation. Comput Math Appl, 2018, 75: 289–295
https://doi.org/10.1016/j.camwa.2017.09.013
36 W X Ma, Y You. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Amer Math Soc, 2005, 357: 1753–1778
https://doi.org/10.1090/S0002-9947-04-03726-2
37 W X Ma, Y Zhou. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J Differential Equations, 2018, 264: 2633–2659
https://doi.org/10.1016/j.jde.2017.10.033
38 W X Ma, Y Zhou, R Dougherty. Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations. Internat J Modern Phys B, 2016, 30: 1640018
https://doi.org/10.1142/S021797921640018X
39 S V Manakov, V E Zakharov, L A Bordag, V B Matveev. Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys Lett A, 1977, 63: 205–206
https://doi.org/10.1016/0375-9601(77)90875-1
40 S Manukure, Y Zhou, W X Ma. Lump solutions to a (2+1)-dimensional extended KP equation. Comput Math Appl, 2018, 75: 2414–2419
https://doi.org/10.1016/j.camwa.2017.12.030
41 S Novikov, S V Manakov, L P Pitaevskii, V E Zakharov. Theory of Solitons—The Inverse Scattering Method. New York: Consultants Bureau, 1984
42 J Satsuma, M J Ablowitz. Two-dimensional lumps in nonlinear dispersive systems. J Math Phys, 1979, 20: 1496–1503
https://doi.org/10.1063/1.524208
43 W Tan, H P Dai, Z D Dai, W Y Zhong. Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation. Pramana—J Phys, 2017, 89: 77
https://doi.org/10.1007/s12043-017-1474-0
44 Y N Tang, S Q Tao, G Qing. Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput Math Appl, 2016, 72: 2334–2342
https://doi.org/10.1016/j.camwa.2016.08.027
45 Ö Ünsal, W X Ma. Linear superposition principle of hyperbolic and trigonometric function solutions to generalized bilinear equations. Comput Math Appl, 2016, 71: 1242–1247
https://doi.org/10.1016/j.camwa.2016.02.006
46 D S Wang, Y B Yin. Symmetry analysis and reductions of the two-dimensional generalized Benney system via geometric approach. Comput Math Appl, 2016, 71: 748–757
https://doi.org/10.1016/j.camwa.2015.12.035
47 A-M Wazwaz, S A El-Tantawy. New (3+ 1)-dimensional equations of Burgers type and Sharma-Tasso-Olver type: multiple-soliton solutions. Nonlinear Dynam, 2017, 87: 2457–2461
https://doi.org/10.1007/s11071-016-3203-5
48 Z H Xu, H L Chen, Z D Dai. Rogue wave for the (2+ 1)-dimensional Kadomtsev-Petviashvili equation. Appl Math Lett, 2014, 37: 34–38
https://doi.org/10.1016/j.aml.2014.05.005
49 J Y Yang, W X Ma. Lump solutions of the BKP equation by symbolic computation. Internat J Modern Phys B, 2016, 30: 1640028
https://doi.org/10.1142/S0217979216400282
50 J Y Yang, W X Ma. Abundant interaction solutions of the KP equation. Nonlinear Dynam, 2017, 89: 1539–1544
https://doi.org/10.1007/s11071-017-3533-y
51 J Y Yang, W X Ma. Abundant lump-type solutions of the Jimbo-Miwa equation in (3+ 1)-dimensions. Comput Math Appl, 2017, 73: 220–225
https://doi.org/10.1016/j.camwa.2016.11.007
52 J Y Yang, WX Ma, Z Y Qin. Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation. Anal Math Phys, 2018, 8: 427–436
https://doi.org/10.1007/s13324-017-0181-9
53 J Y Yang, W X Ma, Z Y Qin. Abundant mixed lump-soliton solutions to the BKP equation. East Asian J Appl Math, 2018, 8: 224–232
https://doi.org/10.4208/eajam.210917.051217a
54 X L Yong, W X Ma, Y H Huang, Y Liu. Lump solutions to the Kadomtsev-Petviashvili I equation with a self-consistent source. Comput Math Appl, 2018, 75: 3414–3419
https://doi.org/10.1016/j.camwa.2018.02.007
55 J P Yu, Y L Sun. Study of lump solutions to dimensionally reduced generalized KP equations. Nonlinear Dynam, 2017, 87: 2755–2763
https://doi.org/10.1007/s11071-016-3225-z
56 Y Zhang, H H Dong, X E Zhang, H W Yang. Rational solutions and lump solutions to the generalized (3+ 1)-dimensional shallow water-like equation. Comput Math Appl, 2017, 73: 246–252
https://doi.org/10.1016/j.camwa.2016.11.009
57 Y Zhang, S L Sun, H H Dong. Hybrid solutions of (3+ 1)-dimensional Jimbo-Miwa equation. Math Probl Eng, 2017, 2017: 5453941
https://doi.org/10.1155/2017/5453941
58 H Q Zhang, W X Ma. Lump solutions to the (2+ 1)-dimensional Sawada-Kotera equation. Nonlinear Dynam, 2017, 87: 2305–2310
https://doi.org/10.1007/s11071-016-3190-6
59 J B Zhang, W X Ma. Mixed lump-kink solutions to the BKP equation. Comput Math Appl, 2017, 74: 591–596
https://doi.org/10.1016/j.camwa.2017.05.010
60 H Q Zhao, W X Ma. Mixed lump-kink solutions to the KP equation. Comput Math Appl, 2017, 74: 1399–1405
https://doi.org/10.1016/j.camwa.2017.06.034
61 Q L Zhao, X Y Li. A Bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal Math Phys, 2016, 6: 237–254
https://doi.org/10.1007/s13324-015-0116-2
62 Y Zhou, W X Ma. Applications of linear superposition principle to resonant solitons and complexitons. Comput Math Appl, 2017, 73: 1697–1706
https://doi.org/10.1016/j.camwa.2017.02.015
[1] Sumayah BATWA, Wen-Xiu MA. Lump solutions to a generalized Hietarinta-type equation via symbolic computation[J]. Front. Math. China, 2020, 15(3): 435-450.
[2] Hui WANG, Shoufu TIAN, Tiantian ZHANG, Yi CHEN. Lump wave and hybrid solutions of a generalized (3+ 1)-dimensional nonlinear wave equation in liquid with gas bubbles[J]. Front. Math. China, 2019, 14(3): 631-643.
[3] Shou-Ting CHEN, Wen-Xiu MA. Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation[J]. Front. Math. China, 2018, 13(3): 525-534.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed