|
|
|
Recollements arising from cotorsion pairs on extriangulated categories |
Yonggang HU1, Panyue ZHOU2( ) |
1. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China 2. College of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China |
|
|
|
|
Abstract This paper is devoted to constructing some recollements of additive categories associated to concentric twin cotorsion pairs on an extriangulated category. As an application, this result generalizes the work by W. J. Chen, Z. K. Liu, and X. Y. Yang in a triangulated case [J. Algebra Appl., 2018, 17(5): 1–15]. Moreover, it highlights new phenomena when it applied to an exact category. Finally, we give some applications of our main results. In particular, we obtain Krause's recollement whose proofs are both elementary and very general.
|
| Keywords
Extriangulated categories
recollements
cotorsion pairs
adjoint pairs
|
|
Corresponding Author(s):
Panyue ZHOU
|
|
Issue Date: 11 October 2021
|
|
| 1 |
A Beilinson, J Bernstein, P Deligne. Faisceaux pervers. In: Analysis and Topology on Singular Spaces, I (Luminy, 1981). Paris: Soc Math France, 1982, 5–171
|
| 2 |
F Borceux. Handbook of Categorical Algebra 1, Basic Category Theory. Encyclopedia Math Appl, Vol 50. Cambridge: Cambridge Univ Press, 1994
https://doi.org/10.1017/CBO9780511525865
|
| 3 |
W J Chen, Z K Liu, X Y Yang. Recollements associated to cotorsion pairs. J Algebra Appl, 2018, 17(5): 1–15
https://doi.org/10.1142/S0219498818501414
|
| 4 |
E E Enochs, O M G Jenda. Relative Homological Algebra, Vol 2. Berlin: De Gruyter, 2011
https://doi.org/10.1515/9783110215212
|
| 5 |
J Gillespie. The at model structure on Ch(R): Trans Amer Math Soc, 2004, 356(8): 3369–3390
https://doi.org/10.1090/S0002-9947-04-03416-6
|
| 6 |
J Gillespie. Cotorsion pairs and degreewise homological model structures. Homology Homotopy Appl, 2008, 10(1): 283–304
https://doi.org/10.4310/HHA.2008.v10.n1.a12
|
| 7 |
J Gillespie. Gorenstein complexes and recollements from cotorsion pairs. Adv Math, 2016, 291: 859–911
https://doi.org/10.1016/j.aim.2016.01.004
|
| 8 |
R Göbel, J Trlifaj. Approximations and Endomorphism Algebras of Modules. Berlin: Walter de Gruyter, 2006
https://doi.org/10.1515/9783110199727
|
| 9 |
Y Liu, H Nakaoka. Hearts of twin cotorsion pairs on extriangulated categories. J Algebra, 2019, 528: 96–149
https://doi.org/10.1016/j.jalgebra.2019.03.005
|
| 10 |
R MacPherson, K Vilonen. Elementary construction of perverse sheaves. Invent Math, 1986, 84(2): 403–435
https://doi.org/10.1007/BF01388812
|
| 11 |
H Nakaoka, Y Palu. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah Topol Géom Différ Catéeg, 2019, 60(2): 117–193
|
| 12 |
M X Wang, Z Q Lin. Recollement of additive quotient categories. arXiv: 1502.00479
|
| 13 |
Q L Zheng, J Q Wei. One-sided triangulated categories induced by concentric twin cotorsion pairs. J Algebra Appl, 2020, 19(8): 2050142
https://doi.org/10.1142/S021949882050142X
|
| 14 |
P Y Zhou, B Zhu. Triangulated quotient categories revisited. J Algebra, 2018, 502: 196–232
https://doi.org/10.1016/j.jalgebra.2018.01.031
|
| 15 |
B Zhu, X Zhuang. Tilting subcategories in extriangulated categories. Front Math China, 2020, 15(1): 225–253
https://doi.org/10.1007/s11464-020-0811-7
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|