Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (4) : 937-955    https://doi.org/10.1007/s11464-021-0953-2
RESEARCH ARTICLE
Recollements arising from cotorsion pairs on extriangulated categories
Yonggang HU1, Panyue ZHOU2()
1. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
2. College of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China
 Download: PDF(353 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper is devoted to constructing some recollements of additive categories associated to concentric twin cotorsion pairs on an extriangulated category. As an application, this result generalizes the work by W. J. Chen, Z. K. Liu, and X. Y. Yang in a triangulated case [J. Algebra Appl., 2018, 17(5): 1–15]. Moreover, it highlights new phenomena when it applied to an exact category. Finally, we give some applications of our main results. In particular, we obtain Krause's recollement whose proofs are both elementary and very general.

Keywords Extriangulated categories      recollements      cotorsion pairs      adjoint pairs     
Corresponding Author(s): Panyue ZHOU   
Issue Date: 11 October 2021
 Cite this article:   
Yonggang HU,Panyue ZHOU. Recollements arising from cotorsion pairs on extriangulated categories[J]. Front. Math. China, 2021, 16(4): 937-955.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0953-2
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I4/937
1 A Beilinson, J Bernstein, P Deligne. Faisceaux pervers. In: Analysis and Topology on Singular Spaces, I (Luminy, 1981). Paris: Soc Math France, 1982, 5–171
2 F Borceux. Handbook of Categorical Algebra 1, Basic Category Theory. Encyclopedia Math Appl, Vol 50. Cambridge: Cambridge Univ Press, 1994
https://doi.org/10.1017/CBO9780511525865
3 W J Chen, Z K Liu, X Y Yang. Recollements associated to cotorsion pairs. J Algebra Appl, 2018, 17(5): 1–15
https://doi.org/10.1142/S0219498818501414
4 E E Enochs, O M G Jenda. Relative Homological Algebra, Vol 2. Berlin: De Gruyter, 2011
https://doi.org/10.1515/9783110215212
5 J Gillespie. The at model structure on Ch(R): Trans Amer Math Soc, 2004, 356(8): 3369–3390
https://doi.org/10.1090/S0002-9947-04-03416-6
6 J Gillespie. Cotorsion pairs and degreewise homological model structures. Homology Homotopy Appl, 2008, 10(1): 283–304
https://doi.org/10.4310/HHA.2008.v10.n1.a12
7 J Gillespie. Gorenstein complexes and recollements from cotorsion pairs. Adv Math, 2016, 291: 859–911
https://doi.org/10.1016/j.aim.2016.01.004
8 R Göbel, J Trlifaj. Approximations and Endomorphism Algebras of Modules. Berlin: Walter de Gruyter, 2006
https://doi.org/10.1515/9783110199727
9 Y Liu, H Nakaoka. Hearts of twin cotorsion pairs on extriangulated categories. J Algebra, 2019, 528: 96–149
https://doi.org/10.1016/j.jalgebra.2019.03.005
10 R MacPherson, K Vilonen. Elementary construction of perverse sheaves. Invent Math, 1986, 84(2): 403–435
https://doi.org/10.1007/BF01388812
11 H Nakaoka, Y Palu. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah Topol Géom Différ Catéeg, 2019, 60(2): 117–193
12 M X Wang, Z Q Lin. Recollement of additive quotient categories. arXiv: 1502.00479
13 Q L Zheng, J Q Wei. One-sided triangulated categories induced by concentric twin cotorsion pairs. J Algebra Appl, 2020, 19(8): 2050142
https://doi.org/10.1142/S021949882050142X
14 P Y Zhou, B Zhu. Triangulated quotient categories revisited. J Algebra, 2018, 502: 196–232
https://doi.org/10.1016/j.jalgebra.2018.01.031
15 B Zhu, X Zhuang. Tilting subcategories in extriangulated categories. Front Math China, 2020, 15(1): 225–253
https://doi.org/10.1007/s11464-020-0811-7
[1] Jiangsheng HU, Dondong ZHANG, Panyue ZHOU. Proper resolutions and Gorensteinness in extriangulated categories[J]. Front. Math. China, 2021, 16(1): 95-117.
[2] Xin MA, Zhaoyong HUANG. Torsion pairs in recollements of abelian categories[J]. Front. Math. China, 2018, 13(4): 875-892.
[3] Peng YU. A recollement construction of Gorenstein derived categories[J]. Front. Math. China, 2018, 13(3): 691-713.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed