Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2013, Vol. 7 Issue (1) : 4-13
Metabolomics in human type 2 diabetes research
Jingyi Lu1, Guoxiang Xie2,3, Weiping Jia1, Wei Jia2,3()
1. Shanghai Diabetes Institute; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital; Shanghai Key Laboratory of Diabetes Mellitus; Shanghai Clinical Center for Diabetes, Shanghai 200233, China; 2. Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China; 3. Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
 Download: PDF(181 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The high prevalence of diabetes and diabetic complications has caused a huge burden on the modern society. Although scientific advances have led to effective strategies for preventing and treating diabetes over the past several decades, little progress has been made toward curing the disease or even getting it under control, from a public health and overall societal standpoint. There is still a lack of reliable biomarkers indicative of metabolic alterations associated with diabetes and different drug responses, highlighting the need for the development of early diagnostic and prognostic markers for diabetes and diabetic complications. The emergence of metabolomics has allowed researchers to systemically measure the small molecule metabolites, which are sensitive to the changes of both environmental and genetic factors and therefore, could be regarded as the link between genotypes and phenotypes. During the last decade, the progression made in metabolomics has provided insightful information on disease development and disease onset prediction. Recent studies using metabolomics approach coupled with statistical tools to predict incident diabetes revealed a number of metabolites that are significantly altered, including branched-chain and aromatic amino acids, such as isoleucine, leucine, valine, tyrosine and phenylalanine, as diagnostic or highly-significant predictors of future diabetes. This review summarizes the current findings of metabolomic studies in human investigations with the most common form of diabetes, type 2 diabetes.

Keywords metabolomics      type 2 diabetes      metabolic pathway      mass spectrometry      nuclear magnetic resonance (NMR)     
Corresponding Author(s): Jia Wei,   
Issue Date: 05 March 2013
 Cite this article:   
Jingyi Lu,Guoxiang Xie,Weiping Jia, et al. Metabolomics in human type 2 diabetes research[J]. Front Med, 2013, 7(1): 4-13.
PathwayMetaboliteChange of direction(vs. healthy control)SamplePlatformReference
Carbohydrate metabolism and TCA cycle1,5-AnhydrogluticolDownSerumNMR, UPLC-MS, GC-MS [38]
DownSerumGC-MS [21]
PyruvateUpSerumGC-MS [21]
LactateUpSerumGC-MS [21]
UpUrineNMR [22]
DownserumGC-MS [58]
DownSerumNMR [57]
CitrateUpUrineNMR [22]
UpUrineNMR [23]
DownSerumNMR [57]
MalateDownUrineNMR [23]
FumarateDownUrineNMR [23]
SuccinateDownUrineNMR [23]
Lipid metabolism3-HydroxybutyrateUpPlasmaGC-MS [36]
UpUrineNMR [23]
UpSerumGC-MS [21]
AcetoacetateUpUrineNMR [23]
Fatty acidsUpPlasmaGC-MS [36]
UpSerumGC-MS [21]
LysoPCsUpPlasmaUPLC-MS [46]
LysoPC (18:2)DownSerumLC-MS [50]
DownSerumLC-MS [49]
LysoPEsUp/DownPlasmaUPLC-MS [46]
PCsUp/DownSerumLC-MS [49]
AcetylcarnitinesUpPlasmaUPLC-MS [46]
UpPlasmaUPLC-MS [45]
Up/DownPlasmaUPLC-MS [42]
DownPlasmaUPLC-MS [47]
Amino acid metabolismValine (BCAA)UPSerumNMR, UPLC-MS, GC-MS [38]
UpserumGC-MS [58]
DownSerumNMR [57]
Leucine (BCAA)UPSerumNMR, UPLC-MS, GC-MS [38]
UpPlasmaUPLC-MS [46]
UpPlasmaGC-MS [36]
DownSerumNMR [57]
DownUrineNMR [23]
Isoleucine (BCAA)UPSerumNMR, UPLC-MS, GC-MS [38]
DownSerumNMR [57]
DownUrineNMR [23]
LysineDownPlasmaGC-MS [36]
DownSerumNMR [57]
DownserumGC-MS [58]
UpPlasmaUPLC-MS [46]
GlycineDownPlasmaGC-MS [36]
DownSerumLC-MS [50]
DownSerumLC-MS [49]
SerineUpPlasmaUPLC-MS [46]
TyrosineDownSerumNMR [57]
PhenylalanineUpPlasmaUPLC-MS [46]
UpSerumGC-MS [21]
PhenylalanineUpSerumLC-MS [49]
DownSerumNMR [57]
TryptophanDownUrineNMR [23]
AlanineUpUrineNMR [22]
DownSerumNMR [57]
GlutamineUpUrineNMR [23]
UpSerumGC-MS [21]
GlutamateUpserumGC-MS [58]
DownSerumGC-MS [21]
MethionineDownSerumNMR [57]
UpSerumGC-MS [21]
HistidineDownSerumNMR [57]
DownUrineNMR [23]
2-HydroxybutyrateUpPlasmaGC×GC-MS [62]
UpPlasmaGC-MS [36]
UpSerumGC-MS [21]
UpPlasmaGC-MS [36]
HippurateUpUrineNMR [22]
TaurineUpUrineNMR [23]
Choline metabolismBetaineUpUrineNMR [22]
DMAUpUrineNMR [22]
TMAOUpUrineNMR [22]
UpUrineNMR [23]
Bile acid metabolismCholateDownSerumNMR, UPLC-MS, GC-MS [38]
DeoxycholateUpSerumNMR, UPLC-MS, GC-MS [38]
Tab.1  List of altered metabolic pathways in T2DM patients
Fig.1  The intensity of serum pyruvate measured by GC-MS in different groups. NC, normal control; T2DM, type 2 diabetes; T1DM, type 1 diabetes; DKA, diabetic ketoacidosis; FT1DM, fulminant type 1 diabetes.
Fig.1  The intensity of serum pyruvate measured by GC-MS in different groups. NC, normal control; T2DM, type 2 diabetes; T1DM, type 1 diabetes; DKA, diabetic ketoacidosis; FT1DM, fulminant type 1 diabetes.
Fig.2  The comparison of 2-hydroxybutyrate between nondiabetic and diabetic subjects and the association of 2-hydroxybutyrate with HbA1c. (A) The intensity of serum 2-hydroxybutyrate measured by GC-MS in normal controls and diabetic patients. (B) The Pearson correlation between 2-hydroxybutyrate and HbA1c.
Fig.2  The comparison of 2-hydroxybutyrate between nondiabetic and diabetic subjects and the association of 2-hydroxybutyrate with HbA1c. (A) The intensity of serum 2-hydroxybutyrate measured by GC-MS in normal controls and diabetic patients. (B) The Pearson correlation between 2-hydroxybutyrate and HbA1c.
1 World Health Organization. Diabetes: Fact sheet N°312 . 2011
2 National Diabetes Information Clearinghouse (NDIC). Complications of Diabetes . 2012
3 Friedrich N. Metabolomics in diabetes research. J Endocrinol 2012; 215(1): 29-42
doi: 10.1530/JOE-12-0120 pmid:22718433
4 Pal A, McCarthy M . The genetics of type 2 diabetes and its clinical relevance. Clin Genet 2012 Nov 20 . [Epub ahead of print]
doi: 10.1111/cge.12055 pmid:10.1111/cge.1205523167659" target="blank">
doi: 10.1111/cge.1205523167659
5 Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G, Willer CJ, Raychaudhuri S, McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L, Segrè AV, van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson R, Bennett AJ, Blagieva R, Boerwinkle E, Bonnycastle LL, Bengtsson Bostr?m K, Bravenboer B, Bumpstead S, Burtt NP, Charpentier G, Chines PS, Cornelis M, Couper DJ, Crawford G, Doney AS, Elliott KS, Elliott AL, Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PR, J?rgensen T, Kao WH, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M, Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken MA, Narisu N, Nilsson P, Owen KR, Payne F, Perry JR, Petersen AK, Platou C, Proen?a C, Prokopenko I, Rathmann W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P, Sigurdsson G, Spars? T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand B, Tichet J, Tuomi T, van Dam RM, van Haeften TW, van Herpt T, van Vliet-Ostaptchouk JV, Walters GB, Weedon MN, Wijmenga C, Witteman J, Bergman RN, Cauchi S, Collins FS, Gloyn AL, Gyllensten U, Hansen T, Hide WA, Hitman GA, Hofman A, Hunter DJ, Hveem K, Laakso M, Mohlke KL, Morris AD, Palmer CN, Pramstaller PP, Rudan I, Sijbrands E, Stein LD, Tuomilehto J, Uitterlinden A, Walker M, Wareham NJ, Watanabe RM, Abecasis GR, Boehm BO, Campbell H, Daly MJ, Hattersley AT, Hu FB, Meigs JB, Pankow JS, Pedersen O, Wichmann HE, Barroso I, Florez JC, Frayling TM, Groop L, Sladek R, Thorsteinsdottir U, Wilson JF, Illig T, Froguel P, van Duijn CM, Stefansson K, Altshuler D, Boehnke M, McCarthy MI ; MAGIC investigators; GIANT Consortium. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010; 42(7): 579-589
doi: 10.1038/ng.609 pmid:20581827
6 Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2001; 2(3): 155-168
doi: 10.1002/cfg.82 pmid:18628911
7 Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999; 29(11): 1181-1189
doi: 10.1080/004982599238047 pmid:10598751
8 Lucio M, Fekete A, Weigert C, W?gele B, Zhao X, Chen J, Fritsche A, H?ring HU, Schleicher ED, Xu G, Schmitt-Kopplin P, Lehmann R. Insulin sensitivity is reflected by characteristic metabolic fingerprints—a Fourier transform mass spectrometric non-targeted metabolomics approach. PLoS ONE 2010; 5(10): e13317
doi: 10.1371/journal.pone.0013317 pmid:20976215
9 Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9(4): 311-326
doi: 10.1016/j.cmet.2009.02.002 pmid:19356713
10 Qiu Y, Cai G, Su M, Chen T, Zheng X, Xu Y, Ni Y, Zhao A, Xu LX, Cai S, Jia W. Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS. J Proteome Res 2009; 8(10): 4844-4850
doi: 10.1021/pr9004162 pmid:19678709
11 Lanza IR, Zhang S, Ward LE, Karakelides H, Raftery D, Nair KS. Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS ONE 2010; 5(5): e10538
doi: 10.1371/journal.pone.0010538 pmid:20479934
12 Bernini P, Bertini I, Luchinat C, Tenori L, Tognaccini A. The cardiovascular risk of healthy individuals studied by NMR metabonomics of plasma samples. J Proteome Res 2011; 10(11): 4983-4992
doi: 10.1021/pr200452j pmid:21902250
13 Xie G, Zheng X, Qi X, Cao Y, Chi Y, Su M, Ni Y, Qiu Y, Liu Y, Li H, Zhao A, Jia W. Metabonomic evaluation of melamine-induced acute renal toxicity in rats. J Proteome Res 2010; 9(1): 125-133
doi: 10.1021/pr900333h pmid:19476335
14 Chen T, Xie G, Wang X, Fan J, Qiu Y, Zheng X, Qi X, Cao Y, Su M, Xu LX, Yen Y, Liu P, Jia W. Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Mol Cell Proteomics 2011;10(7):M110.004945
doi: 10.1074/mcp.M110.004945 pmid:21518826
15 Lenz EM, Wilson ID. Analytical strategies in metabonomics. J Proteome Res 2007; 6(2): 443-458
doi: 10.1021/pr0605217 pmid:17269702
16 Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2007; 2(11): 2692-2703
doi: 10.1038/nprot.2007.376 pmid:18007604
17 Bictash M, Ebbels TM, Chan Q, Loo RL, Yap IK, Brown IJ, de Iorio M, Daviglus ML, Holmes E, Stamler J, Nicholson JK, Elliott P. Opening up the “Black Box”: metabolic phenotyping and metabolome-wide association studies in epidemiology. J Clin Epidemiol 2010; 63(9): 970-979
doi: 10.1016/j.jclinepi.2009.10.001 pmid:20056386
18 Büscher JM, Czernik D, Ewald JC, Sauer U, Zamboni N. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem 2009; 81(6): 2135-2143
doi: 10.1021/ac8022857 pmid:19236023
19 Kim HK, Choi YH, Verpoorte R. NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol 2011; 29(6): 267-275
doi: 10.1016/j.tibtech.2011.02.001 pmid:21435731
20 Blumich B. Essential NMR: For Scientists and Engineers. Springer-Verlag Berlin and Heidelberg GmbH & Co. K , 2005
21 Lu J, Zhou J, Bao Y, Chen T, Zhang Y, Zhao A, Qiu Y, Xie G, Wang C, Jia W, Jia W. Serum metabolic signatures of fulminant type 1 diabetes. J Proteome Res 2012; 11(9): 4705-4711
doi: 10.1021/pr300523x pmid:22894710
22 Messana I, Forni F, Ferrari F, Rossi C, Giardina B, Zuppi C. Proton nuclear magnetic resonance spectral profiles of urine in type II diabetic patients. Clin Chem 1998; 44(7): 1529-1534
23 Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, Nunez D, Sweatman BC, Haselden JN, Cox RD, Connor SC, Griffin JL. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 2007; 29(2): 99-108
doi: 10.1152/physiolgenomics.00194.2006 pmid:17190852
24 Yamanouchi T, Tachibana Y, Akanuma H, Minoda S, Shinohara T, Moromizato H, Miyashita H, Akaoka I. Origin and disposal of 1,5-anhydroglucitol, a major polyol in the human body. Am J Physiol 1992; 263(2 Pt 1): E268-E273
25 Yamanouchi T, Akanuma H, Asano T, Konishi C, Akaoka I, Akanuma Y. Reduction and recovery of plasma 1,5-anhydro-D-glucitol level in diabetes mellitus. Diabetes 1987; 36(6): 709-715
doi: 10.2337/diabetes.36.6.709 pmid:3569670
26 Dungan KM, Buse JB, Largay J, Kelly MM, Button EA, Kato S, Wittlin S. 1,5-anhydroglucitol and postprandial hyperglycemia as measured by continuous glucose monitoring system in moderately controlled patients with diabetes. Diabetes Care 2006; 29(6): 1214-1219
doi: 10.2337/dc06-1910 pmid:16731998
27 Yamanouchi T, Inoue T, Ogata E, Kashiwabara A, Ogata N, Sekino N, Yoshimura T, Ichiyanagi K, Kawasaki T. Post-load glucose measurements in oral glucose tolerance tests correlate well with 1,5-anhydroglucitol, an indicator of overall glycaemic state, in subjects with impaired glucose tolerance. Clin Sci (Lond) 2001; 101(3): 227-233
doi: 10.1042/CS20000319 pmid:11524039
28 Yamanouchi T, Ogata N, Tagaya T, Kawasaki T, Sekino N, Funato H, Akaoka L, Miyashita H. Clinical usefulness of serum 1,5-anhydroglucitol in monitoring glycaemic control. Lancet 1996; 347(9014): 1514-1518
doi: 10.1016/S0140-6736(96)90672-8 pmid:8684103
29 Hanefeld M, Fischer S, Julius U, Schulze J, Schwanebeck U, Schmechel H, Ziegelasch HJ, Lindner J. Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia 1996; 39(12): 1577-1583
doi: 10.1007/s001250050617 pmid:8960845
30 Muggeo M, Zoppini G, Bonora E, Brun E, Bonadonna RC, Moghetti P, Verlato G. Fasting plasma glucose variability predicts 10-year survival of type 2 diabetic patients: the Verona Diabetes Study. Diabetes Care 2000; 23(1): 45-50
doi: 10.2337/diacare.23.1.45 pmid:10857967
31 Temelkova-Kurktschiev TS, Koehler C, Henkel E, Leonhardt W, Fuecker K, Hanefeld M. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care 2000; 23(12): 1830-1834
doi: 10.2337/diacare.23.12.1830 pmid:11128361
32 Erlinger TP, Brancati FL. Postchallenge hyperglycemia in a national sample of U.S. adults with type 2 diabetes. Diabetes Care 2001; 24(10): 1734-1738
doi: 10.2337/diacare.24.10.1734 pmid:11574434
33 Kannel WB. Lipids, diabetes, and coronary heart disease: insights from the Framingham Study. Am Heart J 1985; 110(5): 1100-1107
doi: 10.1016/0002-8703(85)90224-8 pmid:4061265
34 Krauss RM, Siri PW. Dyslipidemia in type 2 diabetes. Med Clin North Am 2004; 88(4): 897-909, x
doi: 10.1016/j.mcna.2004.04.004 pmid:15308384
35 Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 2003; 46(6): 733-749
doi: 10.1007/s00125-003-1111-y pmid:12774165
36 Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS ONE 2010; 5(12): e15234
doi: 10.1371/journal.pone.0015234 pmid:21170321
37 Balasse EO, Féry F. Ketone body production and disposal: effects of fasting, diabetes, and exercise. Diabetes Metab Rev 1989; 5(3): 247-270
doi: 10.1002/dmr.5610050304 pmid:2656155
38 Suhre K, Meisinger C, D?ring A, Altmaier E, Belcredi P, Gieger C, Chang D, Milburn MV, Gall WE, Weinberger KM, Mewes HW, Hrabé de Angelis M, Wichmann HE, Kronenberg F, Adamski J, Illig T. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS ONE 2010; 5(11): e13953
doi: 10.1371/journal.pone.0013953 pmid:21085649
39 Blaak EE, van Aggel-Leijssen DP, Wagenmakers AJ, Saris WH, van Baak MA. Impaired oxidation of plasma-derived fatty acids in type 2 diabetic subjects during moderate-intensity exercise. Diabetes 2000; 49(12): 2102-2107
doi: 10.2337/diabetes.49.12.2102 pmid:11118013
40 Kelley DE. Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin Invest 2005; 115(7): 1699-1702
doi: 10.1172/JCI25758 pmid:16007246
41 Kelley DE, Goodpaster B, Wing RR, Simoneau JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 1999; 277(6 Pt 1): E1130-E1141
42 Adams SH, Hoppel CL, Lok KH, Zhao L, Wong SW, Minkler PE, Hwang DH, Newman JW, Garvey WT. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr 2009; 139(6): 1073-1081
doi: 10.3945/jn.108.103754 pmid:19369366
43 Kramer HF, Goodyear LJ. Exercise, MAPK, and NF-kappaB signaling in skeletal muscle. J Appl Physiol 2007; 103(1): 388-395
doi: 10.1152/japplphysiol.00085.2007 pmid:17303713
44 Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 2008; 14(3-4): 222-231
doi: 10.2119/2007-00119.Tilg pmid:18235842
45 Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FG, DeLany JP. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity (Silver Spring) 2010; 18(9): 1695-1700
doi: 10.1038/oby.2009.510 pmid:20111019
46 Ha CY, Kim JY, Paik JK, Kim OY, Paik YH, Lee EJ, Lee JH. The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clin Endocrinol (Oxf) 2012; 76(5): 674-682
doi: 10.1111/j.1365-2265.2011.04244.x pmid:21958081
47 Mihalik SJ, Michaliszyn SF, de las Heras J, Bacha F, Lee S, Chace DH, DeJesus VR, Vockley J, Arslanian SA. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: evidence for enhanced mitochondrial oxidation. Diabetes Care 2012; 35(3): 605-611
doi: 10.2337/DC11-1577 pmid:22266733
48 Cole LK, Vance JE, Vance DE. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta 2012; 1821(5): 754-761
doi: 10.1016/j.bbalip.2011.09.009 pmid:21979151
49 Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, Fritsche A, H?ring HU, Hrabe de Angelis M, Peters A, Roden M, Prehn C, Wang-Sattler R, Illig T, Schulze MB, Adamski J, Boeing H, Pischon T. Identification of Serum Metabolites Associated With Risk of Type 2 Diabetes Using a Targeted Metabolomic Approach. Diabetes 2012 Oct 4. [Epub ahead of print]
doi: 10.2337/db12-0495 pmid:10.2337/db12-049523043162" target="blank">
doi: 10.2337/db12-049523043162
50 Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, Heim K, Campillos M, Holzapfel C, Thorand B, Grallert H, Xu T, Bader E, Huth C, Mittelstrass K, D?ring A, Meisinger C, Gieger C, Prehn C, Roemisch-Margl W, Carstensen M, Xie L, Yamanaka-Okumura H, Xing G, Ceglarek U, Thiery J, Giani G, Lickert H, Lin X, Li Y, Boeing H, Joost HG, de Angelis MH, Rathmann W, Suhre K, Prokisch H, Peters A, Meitinger T, Roden M, Wichmann HE, Pischon T, Adamski J, Illig T. Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 2012; 8: 615
doi: 10.1038/msb.2012.43 pmid:23010998
51 Felig P, Marliss E, Cahill GF Jr. Plasma amino acid levels and insulin secretion in obesity. N Engl J Med 1969; 281(15): 811-816
doi: 10.1056/NEJM196910092811503 pmid:5809519
52 Felig P, Wahren J, Hendler R, Brundin T. Splanchnic glucose and amino acid metabolism in obesity. J Clin Invest 1974; 53(2): 582-590
doi: 10.1172/JCI107593 pmid:11344573
53 Luetscher JA Jr. The Metabolism of Amino Acids in Diabetes Mellitus. J Clin Invest 1942; 21(3): 275-279
doi: 10.1172/JCI101300 pmid:16694912
54 Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA, Tanner CJ, Kuchibhatla M, Houmard JA, Newgard CB, Kraus WE. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009; 32(9): 1678-1683
doi: 10.2337/dc08-2075 pmid:19502541
55 Tai ES, Tan ML, Stevens RD, Low YL, Muehlbauer MJ, Goh DL, Ilkayeva OR, Wenner BR, Bain JR, Lee JJ, Lim SC, Khoo CM, Shah SH, Newgard CB. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010; 53(4): 757-767
doi: 10.1007/s00125-009-1637-8 pmid:20076942
56 Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE. Metabolite profiles and the risk of developing diabetes. Nat Med 2011; 17(4): 448-453
doi: 10.1038/nm.2307 pmid:21423183
57 Zhang X, Wang Y, Hao F, Zhou X, Han X, Tang H, Ji L. Human serum metabonomic analysis reveals progression axes for glucose intolerance and insulin resistance statuses. J Proteome Res 2009; 8(11): 5188-5195
doi: 10.1021/pr900524z pmid:19697961
58 Bao Y, Zhao T, Wang X, Qiu Y, Su M, Jia W, Jia W. Metabonomic variations in the drug-treated type 2 diabetes mellitus patients and healthy volunteers. J Proteome Res 2009; 8(4): 1623-1630
doi: 10.1021/pr800643w pmid:19714868
59 Mochida T, Tanaka T, Shiraki Y, Tajiri H, Matsumoto S, Shimbo K, Ando T, Nakamura K, Okamoto M, Endo F. Time-dependent changes in the plasma amino acid concentration in diabetes mellitus. Mol Genet Metab 2011; 103(4): 406-409
doi: 10.1016/j.ymgme.2011.05.002 pmid:21636301
60 Phillips JD, Kushner JP. Fast track to the porphyrias. Nat Med 2005; 11(10): 1049-1050
doi: 10.1038/nm1005-1049 pmid:16211036
61 Gall WE, Beebe K, Lawton KA, Adam KP, Mitchell MW, Nakhle PJ, Ryals JA, Milburn MV, Nannipieri M, Camastra S, Natali A, Ferrannini E;βRISC Study Group. alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE 2010; 5(5): e10883
doi: 10.1371/journal.pone.0010883 pmid:20526369
62 Li X, Xu Z, Lu X, Yang X, Yin P, Kong H, Yu Y, Xu G. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus. Anal Chim Acta 2009; 633(2): 257-262
doi: 10.1016/j.aca.2008.11.058 pmid:19166731
63 Mosharov E, Cranford MR, Banerjee R. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry 2000; 39(42): 13005-13011
doi: 10.1021/bi001088w pmid:11041866
64 Persa C, Pierce A, Ma Z, Kabil O, Lou MF. The presence of a transsulfuration pathway in the lens: a new oxidative stress defense system. Exp Eye Res 2004; 79(6): 875-886
doi: 10.1016/j.exer.2004.06.029 pmid:15642325
65 Kostolanská J, Jakus V, Barák L. HbA1c and serum levels of advanced glycation and oxidation protein products in poorly and well controlled children and adolescents with type 1 diabetes mellitus. J Pediatr Endocrinol Metab ; 22(5): 433-442
doi: 10.1515/JPEM.2009.22.5.433 pmid:19618662
66 Bennion LJ, Grundy SM. Effects of diabetes mellitus on cholesterol metabolism in man. N Engl J Med 1977; 296(24): 1365-1371
doi: 10.1056/NEJM197706162962401 pmid:870827
67 Schwartz SL, Lai YL, Xu J, Abby SL, Misir S, Jones MR, Nagendran S. The effect of colesevelam hydrochloride on insulin sensitivity and secretion in patients with type 2 diabetes: a pilot study. Metab Syndr Relat Disord 2010; 8(2): 179-188
doi: 10.1089/met.2009.0049 pmid:20059361
68 Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341): 57-63
doi: 10.1038/nature09922 pmid:21475195
69 McGill HC Jr, McMahan CA. Determinants of atherosclerosis in the young. Am J Cardiol 1998; 82(10B): 30T-36T
doi: 10.1016/S0002-9149(98)00720-6 pmid:9860371
70 Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97(18): 1837-1847
doi: 10.1161/01.CIR.97.18.1837 pmid:9603539
71 al-Waiz M, Mikov M, Mitchell SC, Smith RL. The exogenous origin of trimethylamine in the mouse. Metabolism 1992; 41(2): 135-136
doi: 10.1016/0026-0495(92)90140-6 pmid:1736035
72 Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, Nicholson JK, Holmes E. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci USA 2011; 108(Suppl 1): 4523-4530
doi: 10.1073/pnas.1006734107 pmid:20837534
73 Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 2005; 3(5): 431-438
doi: 10.1038/nrmicro1152 pmid:15821725
74 Fujimura KE, Slusher NA, Cabana MD, Lynch SV. Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther 2010; 8(4): 435-454
doi: 10.1586/eri.10.14 pmid:20377338
[1] Heng Fang, Aihua Zhang, Xiaohang Zhou, Jingbo Yu, Qi Song, Xijun Wang. High-throughput metabolomics reveals the perturbed metabolic pathways and biomarkers of Yang Huang syndrome as potential targets for evaluating the therapeutic effects and mechanism of geniposide[J]. Front. Med., 2020, 14(5): 651-663.
[2] Huiwen Ren, Can Wu, Ying Shao, Shuang Liu, Yang Zhou, Qiuyue Wang. Correlation between serum miR-154-5p and urinary albumin excretion rates in patients with type 2 diabetes mellitus: a cross-sectional cohort study[J]. Front. Med., 2020, 14(5): 642-650.
[3] Ning Jiang, Yao Li, Ting Shu, Jing Wang. Cytokines and inflammation in adipogenesis: an updated review[J]. Front. Med., 2019, 13(3): 314-329.
[4] Xiaoqing Li, Xinxin Li, Genbei Wang, Yan Xu, Yuanyuan Wang, Ruijia Hao, Xiaohui Ma. Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice[J]. Front. Med., 2018, 12(6): 688-696.
[5] Liping Xuan, Zhiyun Zhao, Xu Jia, Yanan Hou, Tiange Wang, Mian Li, Jieli Lu, Yu Xu, Yuhong Chen, Lu Qi, Weiqing Wang, Yufang Bi, Min Xu. Type 2 diabetes is causally associated with depression: a Mendelian randomization analysis[J]. Front. Med., 2018, 12(6): 678-687.
[6] Zhilin Hu, Qiang Zou, Bing Su. Regulation of T cell immunity by cellular metabolism[J]. Front. Med., 2018, 12(4): 463-472.
[7] Chunyu Li, Ming Niu, Zhaofang Bai, Congen Zhang, Yanling Zhao, Ruiyu Li, Can Tu, Huifang Li, Jing Jing, Yakun Meng, Zhijie Ma, Wuwen Feng, Jinfa Tang, Yun Zhu, Jinjie Li, Xiaoya Shang, Zhengsheng Zou, Xiaohe Xiao, Jiabo Wang. Screening for main components associated with the idiosyncratic hepatotoxicity of a tonic herb, Polygonum multiflorum[J]. Front. Med., 2017, 11(2): 253-265.
[8] Palka Kaur Khanuja,Satish Chander Narula,Rajesh Rajput,Rajinder Kumar Sharma,Shikha Tewari. Association of periodontal disease with glycemic control in patients with type 2 diabetes in Indian population[J]. Front. Med., 2017, 11(1): 110-119.
[9] Jiabo Wang,Zhijie Ma,Ming Niu,Yun Zhu,Qingsheng Liang,Yanling Zhao,Jingyuan Song,Zhaofang Bai,Yaming Zhang,Ping Zhang,Na Li,Yakun Meng,Qi Li,Lushan Qin,Guangju Teng,Junling Cao,Baosen Li,Shilin Chen,Yonggang Li,Zhengsheng Zou,Honghao Zhou,Xiaohe Xiao. Evidence chain-based causality identification in herb-induced liver injury: exemplification of a well-known liver-restorative herb Polygonum multiflorum[J]. Front. Med., 2015, 9(4): 457-467.
[10] Xiaoyan Chen,Wenxia Xiao,Xinchun Li,Jianxun He,Xiaochun Huang,Yuyu Tan. In vivo evaluation of renal function using diffusion weighted imaging and diffusion tensor imaging in type 2 diabetics with normoalbuminuria versus microalbuminuria[J]. Front. Med., 2014, 8(4): 471-476.
[11] Xiao Liu, Hui Ren, Daizhi Peng. Sepsis biomarkers: an omics perspective[J]. Front Med, 2014, 8(1): 58-67.
[12] Jianping Ye. Mechanisms of insulin resistance in obesity[J]. Front Med, 2013, 7(1): 14-24.
[13] Ranhua JIANG, Zhibo HAN, Guangsheng ZHUO, Xiaodan QU, Xue LI, Xin WANG, Yuankang SHAO, Shimin YANG, Zhong Chao HAN. Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study[J]. Front Med, 2011, 5(1): 94-100.
Full text