|
|
Growth suppression of colorectal cancer expressing S492R EGFR by monoclonal antibody CH12 |
Qiongna Dong1,2, Bizhi Shi1, Min Zhou1, Huiping Gao1, Xiaoying Luo1, Zonghai Li1, Hua Jiang1( ) |
1. State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China 2. Department of Otolaryngology, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China |
|
|
Abstract Colorectal cancer (CRC) is a common malignant tumor in the digestive tract, and 30%–85% of CRCs express epidermal growth factor receptors (EGFRs). Recently, treatments using cetuximab, also named C225, an anti-EGFR monoclonal antibody, for CRC have been demonstrated to cause an S492R mutation in EGFR. However, little is known about the biological function of S492R EGFR. Therefore, we attempted to elucidate its biological function in CRC cells and explore new treatment strategies for this mutant form. Our study indicated that EGFR and S492R EGFR accelerate the growth of CRC cells in vitro and in vivo and monoclonal antibody CH12, which specifically recognizes an EGFR tumor-specific epitope, can bind efficiently to S492R EGFR. Furthermore, mAb CH12 showed significantly stronger growth suppression activities and induced a more potent antibody-dependent cellular cytotoxicity effect on CRC cells bearing S492R EGFR than mAb C225. mAb CH12 obviously suppressed the growth of CRC xenografts with S492R EGFR mutations in vivo. Thus, mAb CH12 may be a promising therapeutic agent in treating patients with CRC bearing an S492R EGFR mutation.
|
Keywords
S492R EGFR ectodomain mutation
colorectal cancer
mAb CH12
immunnotherapy
|
Corresponding Author(s):
Hua Jiang
|
Just Accepted Date: 28 December 2018
Online First Date: 22 January 2019
Issue Date: 12 March 2019
|
|
1 |
JCEncarnação, ASPires, RAAmaral, TJGonçalves, MLaranjo, JECasalta-Lopes, ACGonçalves, ABSarmento-Ribeiro, AMAbrantes, MFBotelho. Butyrate, a dietary fiber derivative that improves irinotecan effect in colon cancer cells. J Nutr Biochem 2018; 56: 183–192
https://doi.org/10.1016/j.jnutbio.2018.02.018
pmid: 29587241
|
2 |
GGoel. Evolution of regorafenib from bench to bedside in colorectal cancer: is it an attractive option or merely a “me too” drug? Cancer Manag Res 2018; 10: 425–437
https://doi.org/10.2147/CMAR.S88825
pmid: 29563833
|
3 |
JHStrickler, HI Hurwitz. Palliative treatment of metastatic colorectal cancer: what is the optimal approach? Curr Oncol Rep 2014; 16(1): 363
https://doi.org/10.1007/s11912-013-0363-z
pmid: 24293074
|
4 |
AKalyan, S Kircher, HShah, MMulcahy, ABenson. Updates on immunotherapy for colorectal cancer. J Gastrointest Oncol 2018; 9(1): 160–169
https://doi.org/10.21037/jgo.2018.01.17
pmid: 29564182
|
5 |
MHDietvorst, FA Eskens. Current and novel treatment options for metastatic colorectal cancer: emphasis on aflibercept. Biol Ther 2013; 3(1): 25–33
https://doi.org/10.1007/s13554-013-0009-6
pmid: 24392302
|
6 |
ESanz-Garcia, J Grasselli, GArgiles, MEElez, JTabernero. Current and advancing treatments for metastatic colorectal cancer. Expert Opin Biol Ther 2016; 16(1): 93–110
https://doi.org/10.1517/14712598.2016.1108405
pmid: 26549053
|
7 |
SYLee, SC Oh. Advances of targeted therapy in treatment of unresectable metastatic colorectal cancer. BioMed Res Int 2016; 2016: 7590245
https://doi.org/10.1155/2016/7590245
pmid: 27127793
|
8 |
CTomida, K Aibara, NYamagishi, CYano, H Nagano, TAbe, AOhno, K Hirasaka, TNikawa, STeshima-Kondo. The malignant progression effects of regorafenib in human colon cancer cells. J Med Invest 2015; 62(3-4): 195–198
https://doi.org/10.2152/jmi.62.195
pmid: 26399347
|
9 |
LLiang, L Wang, PZhu, YXia, Y Qiao, JWu, WZhuang, JFei, Y Wen, XJiang. A pilot study of apatinib as third-line treatment in patients with heavily treated metastatic colorectal cancer. Clin Colorectal Cancer 2018; 17(3): e443–e449
https://doi.org/10.1016/j.clcc.2018.02.011
pmid: 29576426
|
10 |
CTomida, H Nagano, NYamagishi, TUchida, AOhno, K Hirasaka, TNikawa, STeshima-Kondo. Regorafenib induces adaptive resistance of colorectal cancer cells via inhibition of vascular endothelial growth factor receptor. J Med Invest 2017; 64 (3.4): 262–265
https://doi.org/DOI: 10.2152/jmi.64.262
|
11 |
TYamaoka, M Ohba, TOhmori. Molecular-targeted therapies for epidermal growth factor receptor and its resistance mechanisms. Int J Mol Sci 2017; 18(11): E2420
https://doi.org/10.3390/ijms18112420
pmid: 29140271
|
12 |
PSavage, A Blanchet-Cohen, TRevil, DBadescu, SMISaleh, YCWang, DZuo, L Liu, NRBertos, VMunoz-Ramos, MBasik, KPetrecca, JAsselah, SMeterissian, MCGuiot, AOmeroglu, CLKleinman, MPark, J Ragoussis. A targetable EGFR-dependent tumor-initiating program in breast cancer. Cell Reports 2017; 21(5): 1140–1149
https://doi.org/10.1016/j.celrep.2017.10.015
pmid: 29091754
|
13 |
PZhou, J Hu, XWang, JWang, Y Zhang, CWang. Epidermal growth factor receptor expression affects proliferation and apoptosis in non-small cell lung cancer cells via the extracellular signal-regulated kinase/microRNA 200a signaling pathway. Oncol Lett 2018; 15(4): 5201–5207
https://doi.org/10.3892/ol.2018.7961
pmid: 29552158
|
14 |
JLi, R Liang, CSong, YXiang, YLiu. Prognostic significance of epidermal growth factor receptor expression in glioma patients. OncoTargets Ther 2018; 11: 731–742
https://doi.org/10.2147/OTT.S155160
pmid: 29445288
|
15 |
QLiu, S Yu, WZhao, SQin, Q Chu, KWu. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer 2018; 17(1): 53
https://doi.org/10.1186/s12943-018-0793-1
pmid: 29455669
|
16 |
VTBroadbridge, CS Karapetis, TJPrice. Cetuximab in metastatic colorectal cancer. Expert Rev Anticancer Ther 2012; 12(5): 555–565
https://doi.org/10.1586/era.12.25
pmid: 22594891
|
17 |
MDel Prete, R Giampieri, LFaloppi, MBianconi, ABittoni, KAndrikou, SCascinu. Panitumumab for the treatment of metastatic colorectal cancer: a review. Immunotherapy 2015; 7(7): 721–738
https://doi.org/10.2217/imt.15.46
pmid: 26250414
|
18 |
CMontagut, A Dalmases, BBellosillo, MCrespo, SPairet, MIglesias, MSalido, MGallen, SMarsters, SPTsai, AMinoche, SSeshagiri, SSerrano, HHimmelbauer, JBellmunt, ARovira, JSettleman, FBosch, JAlbanell. Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer. Nat Med 2012; 18(2): 221–223
https://doi.org/10.1038/nm.2609
pmid: 22270724
|
19 |
CEsposito, AM Rachiglio, MLLa Porta, ASacco, CRoma, A Iannaccone, FTatangelo, LForgione, RPasquale, ABarbaro, GBotti, FCiardiello, NNormanno. The S492R EGFR ectodomain mutation is never detected in KRAS wild-type colorectal carcinoma before exposure to EGFR monoclonal antibodies. Cancer Biol Ther 2013; 14(12): 1143–1146
https://doi.org/10.4161/cbt.26340
pmid: 24025416
|
20 |
DTougeron, U Cortes, AFerru, CVillalva, CSilvain, JMTourani, PLevillain, LKarayan-Tapon. Epidermal growth factor receptor (EGFR) and KRAS mutations during chemotherapy plus anti-EGFR monoclonal antibody treatment in metastatic colorectal cancer. Cancer Chemother Pharmacol 2013; 72(2): 397–403
https://doi.org/10.1007/s00280-013-2211-0
pmid: 23765179
|
21 |
KNewhall, T Price, MPeeters, TWKim, J Li, SCascinu, PRuff, AS Suresh, AThomas, STjulandin, SOgbagabriel, MBoedigheimer, SSexson, KZhang, SMurugappan, RSidhu. Frequency of S492R mutations in the epidermal growth factor receptor: analysis of plasma DNA from metastatic colorectal cancer patients treated with panitumumab or cetuximab monotherapy. Ann Oncol 2014; 25 (suppl_2): ii109
https://doi.org/10.1093/annonc/mdu193.11
|
22 |
HJiang, H Wang, ZTan, SHu, H Wang, BShi, LYang, P Li, JGu, HWang, Z Li. Growth suppression of human hepatocellular carcinoma xenografts by a monoclonal antibody CH12 directed to epidermal growth factor receptor variant III. J Biol Chem 2011; 286(7): 5913–5920
https://doi.org/10.1074/jbc.M110.192252
pmid: 21163950
|
23 |
HWang, B Shi, QZhang, HJiang, SHu, J Kong, MYao, SYang, Z Li. Growth and metastasis suppression of glioma xenografts expressing exon 4-deletion variant of epidermal growth factor receptor by monoclonal antibody CH12-mediated receptor degradation. FASEB J 2012; 26(1): 73–80
https://doi.org/10.1096/fj.11-191064
pmid: 21917986
|
24 |
RBLuwor, TG Johns, CMurone, HJHuang, WKCavenee, GRitter, LJOld, AW Burgess, AMScott. Monoclonal antibody 806 inhibits the growth of tumor xenografts expressing either the de2-7 or amplified epidermal growth factor receptor (EGFR) but not wild-type EGFR. Cancer Res 2001; 61(14): 5355–5361
pmid: 11454674
|
25 |
HJiang, Q Dong, XLuo, BShi, H Wang, HGao, JKong, J Zhang, ZLi. The monoclonal antibody CH12 augments 5-fluorouracil-induced growth suppression of hepatocellular carcinoma xenografts expressing epidermal growth factor receptor variant III. Cancer Lett 2014; 342(1): 113–120
https://doi.org/10.1016/j.canlet.2013.08.038
pmid: 24007863
|
26 |
MZhou, H Wang, KZhou, XLuo, X Pan, BShi, HJiang, JZhang, KLi, HM Wang, HGao, SLu, M Yao, YMao, HYWang, SYang, J Gu, CLi, ZLi. A novel EGFR isoform confers increased invasiveness to cancer cells. Cancer Res 2013; 73(23): 7056–7067
https://doi.org/10.1158/0008-5472.CAN-13-0194
pmid: 24240702
|
27 |
HWang, H Jiang, MZhou, ZXu, S Liu, BShi, XYao, M Yao, JGu, ZLi. Epidermal growth factor receptor vIII enhances tumorigenicity and resistance to 5-fluorouracil in human hepatocellular carcinoma. Cancer Lett 2009; 279(1): 30–38
https://doi.org/10.1016/j.canlet.2009.01.019
pmid: 19217205
|
28 |
DBalin-Gauthier, JP Delord, PRochaix, VMallard, FThomas, IHennebelle, RBugat, PCanal, CAllal. In vivo and in vitro antitumor activity of oxaliplatin in combination with cetuximab in human colorectal tumor cell lines expressing different level of EGFR. Cancer Chemother Pharmacol 2006; 57(6): 709–718
https://doi.org/10.1007/s00280-005-0123-3
pmid: 16320055
|
29 |
YYang, H Jiang, HGao, JKong, P Zhang, SHu, BShi, P Zhang, MYao, ZLi. The monoclonal antibody CH12 enhances the sorafenib-mediated growth inhibition of hepatocellular carcinoma xenografts expressing epidermal growth factor receptor variant III. Neoplasia 2012; 14(6): 509–518
https://doi.org/10.1593/neo.12328
pmid: 22787432
|
30 |
KLiu, H Gao, QWang, LWang, B Zhang, ZHan, XChen, M Han, MGao. Hispidulin suppresses cell growth and metastasis by targeting PIM1 through JAK2/STAT3 signaling in colorectal cancer. Cancer Sci 2018; 109(5): 1369–1381
https://doi.org/10.1111/cas.13575
pmid: 29575334
|
31 |
CBaratelli, C Zichi, MDi Maio, MPBrizzi, CSonetto, GVScagliotti, MTampellini. A systematic review of the safety profile of the different combinations of fluoropyrimidines and oxaliplatin in the treatment of colorectal cancer patients. Crit Rev Oncol Hematol 2018; 122: 21–29
https://doi.org/10.1016/j.critrevonc.2017.12.010
pmid: 29458787
|
32 |
FMde Man, AKL Goey, RHNvan Schaik, RHJMathijssen, SBins. Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet 2018; 57(10):1229–1254
https://doi.org/10.1007/s40262-018-0644-7
|
33 |
KFujita, Y Kubota, HIshida, YSasaki. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J Gastroenterol 2015; 21(43): 12234–12248
https://doi.org/10.3748/wjg.v21.i43.12234
pmid: 26604633
|
34 |
CLTeng, CY Wang, YHChen, CHLin, WL Hwang. Optimal sequence of irinotecan and oxaliplatin-based regimens in metastatic colorectal cancer: a population-based observational study. PLoS One 2015; 10(8): e0135673
https://doi.org/10.1371/journal.pone.0135673
pmid: 26273837
|
35 |
CMontagut, J Albanell. Mechanisms of acquired resistance to anti-EGF receptor treatment in colorectal cancer. Colorectal Cancer 2012; 1(6): 491–502
https://doi.org/10.2217/crc.12.62
|
36 |
HKGan, AW Burgess, AHClayton, AMScott. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res 2012; 72(12): 2924–2930
https://doi.org/10.1158/0008-5472.CAN-11-3898
pmid: 22659454
|
37 |
JERogers. Patient considerations in metastatic colorectal cancer — role of panitumumab. OncoTargets Ther 2017; 10: 2033–2044
https://doi.org/10.2147/OTT.S115430
pmid: 28435294
|
38 |
MJhawer, S Goel, AJWilson, CMontagna, YHLing, DSByun, SNasser, DArango, JShin, L Klampfer, LHAugenlicht, RPerez-Soler, JMMariadason. PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 2008; 68(6): 1953–1961
https://doi.org/10.1158/0008-5472.CAN-07-5659
pmid: 18339877
|
39 |
WZhang, M Gordon, OAPress, KRhodes, DVallböhmer, DYYang, DPark, W Fazzone, ASchultheis, AESherrod, SIqbal, SGroshen, HJLenz. Cyclin D1 and epidermal growth factor polymorphisms associated with survival in patients with advanced colorectal cancer treated with cetuximab. Pharmacogenet Genomics 2006; 16(7): 475–483
https://doi.org/10.1097/01.fpc.0000220562.67595.a5
pmid: 16788380
|
40 |
SKong, CI Amos, RLuthra, PMLynch, BLevin, MLFrazier. Effects of cyclin D1 polymorphism on age of onset of hereditary nonpolyposis colorectal cancer. Cancer Res 2000; 60(2): 249–252
pmid: 10667569
|
41 |
BCKoehler, AL Scherr, SLorenz, TUrbanik, NKautz, CElssner, SWelte, JLBermejo, DJäger, HSchulze-Bergkamen. Beyond cell death — antiapoptotic Bcl-2 proteins regulate migration and invasion of colorectal cancer cells in vitro. PLoS One 2013; 8(10): e76446
https://doi.org/10.1371/journal.pone.0076446
pmid: 24098503
|
42 |
QRQi, ZM Yang. Regulation and function of signal transducer and activator of transcription 3. World J Biol Chem 2014; 5(2): 231–239
pmid: 24921012
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|