|
|
Altered intestinal microbiota associated with colorectal cancer |
Hong Zhang1, Ying Chang2, Qingqing Zheng2, Rong Zhang1, Cheng Hu1( ), Weiping Jia1 |
1. Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China 2. Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China |
|
|
Abstract The gut microbiota plays an important role in the development and progression of colorectal cancer (CRC). To learn more about the dysbiosis of carcinogenesis, we assessed alterations in gut microbiota in patients with CRC. A total of 23 subjects were enrolled in this study: 9 had CRC (CRC group) and 14 had normal colons (normal group). The microbiome of the mucosal--luminal interface of each subject was sampled and analyzed using 16S rRNA gene amplicon sequencing. We also used Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) to predict microbial functional profiles. The microbial composition of the mucosal lumen differed between the groups, and the presence of specific bacteria may serve as a potential biomarker for colorectal carcinogenesis. We identified a significant reduction in Eubacterium, which is a butyrate-producing genera of bacteria, and a significant increase in Devosia in the gut microbiota of CRC patients. Different levels of gut microflora in healthy and CRC samples were identified. The observed abundance of bacterial species belonging to Eubacterium and Devosia may serve as a promising biomarker for the early detection of CRC.
|
Keywords
colorectal cancer (CRC)
gut microbiota
intestinal
Eubacterium
Devosia
|
Corresponding Author(s):
Cheng Hu
|
Just Accepted Date: 28 May 2019
Online First Date: 01 July 2019
Issue Date: 02 August 2019
|
|
1 |
D Cunningham, W Atkin, HJ Lenz, HT Lynch, B Minsky, B Nordlinger, N Starling. Colorectal cancer. Lancet 2010; 375(9719): 1030–1047
https://doi.org/10.1016/S0140-6736(10)60353-4
pmid: 20304247
|
2 |
J Regula, M Rupinski, E Kraszewska, M Polkowski, J Pachlewski, J Orlowska, MP Nowacki, E Butruk. Colonoscopy in colorectal-cancer screening for detection of advanced neoplasia. N Engl J Med 2006; 355(18): 1863–1872
https://doi.org/10.1056/NEJMoa054967
pmid: 17079760
|
3 |
MA Azcárate-Peril, M Sikes, JM Bruno-Bárcena. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol 2011; 301(3): G401–G424
https://doi.org/10.1152/ajpgi.00110.2011
pmid: 21700901
|
4 |
Y Horiuchi, J Fujisaki, N Ishizuka, M Omae, A Ishiyama, T Yoshio, T Hirasawa, Y Yamamoto, M Nagahama, H Takahashi, T Tsuchida. Study on clinical factors involved in Helicobacter pylori-uninfected, undifferentiated-type early gastric cancer. Digestion 2017; 96(4): 213–219
https://doi.org/10.1159/000481817
pmid: 29050004
|
5 |
JK Nicholson, E Holmes, J Kinross, R Burcelin, G Gibson, W Jia, S Pettersson. Host-gut microbiota metabolic interactions. Science 2012; 336(6086): 1262–1267
https://doi.org/10.1126/science.1223813
pmid: 22674330
|
6 |
T Yatsunenko, FE Rey, MJ Manary, I Trehan, MG Dominguez-Bello, M Contreras, M Magris, G Hidalgo, RN Baldassano, AP Anokhin, AC Heath, B Warner, J Reeder, J Kuczynski, JG Caporaso, CA Lozupone, C Lauber, JC Clemente, D Knights, R Knight, JI Gordon. Human gut microbiome viewed across age and geography. Nature 2012; 486(7402): 222–227
https://doi.org/10.1038/nature11053
pmid: 22699611
|
7 |
DM Parkin. The global health burden of infection-associated cancers in the year 2002. Int J Cancer 2006; 118(12): 3030–3044
https://doi.org/10.1002/ijc.21731
pmid: 16404738
|
8 |
EL Amitay, S Werner, M Vital, DH Pieper, D Höfler, IJ Gierse, J Butt, Y Balavarca, K Cuk, H Brenner. Fusobacterium and colorectal cancer: causal factor or passenger? Results from a large colorectal cancer screening study. Carcinogenesis 2017; 38(8): 781–788
https://doi.org/10.1093/carcin/bgx053
pmid: 28582482
|
9 |
Y Yamaoka, Y Suehiro, S Hashimoto, T Hoshida, M Fujimoto, M Watanabe, D Imanaga, K Sakai, T Matsumoto, M Nishioka, T Takami, N Suzuki, S Hazama, H Nagano, I Sakaida, T Yamasaki. Fusobacterium nucleatum as a prognostic marker of colorectal cancer in a Japanese population. J Gastroenterol 2018; 53(4): 517–524
pmid: 28823057
|
10 |
J Repass, N Maherali, K, Owen Reproducibility Project: Cancer Biology. Registered report: Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. eLife 2016; 5:e10012
https://doi.org/DOI:10.7554/eLife.10012
pmid: 26882501
|
11 |
L Mira-Pascual, R Cabrera-Rubio, S Ocon, P Costales, A Parra, A Suarez, F Moris, L Rodrigo, A Mira, MC Collado. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J Gastroenterol 2015; 50(2): 167–179
https://doi.org/10.1007/s00535-014-0963-x
pmid: 24811328
|
12 |
W Mottawea, CK Chiang, M Mühlbauer, AE Starr, J Butcher, T Abujamel, SA Deeke, A Brandel, H Zhou, S Shokralla, M Hajibabaei, R Singleton, EI Benchimol, C Jobin, DR Mack, D Figeys, A Stintzi. Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn’s disease. Nat Commun 2016; 7(1): 13419
https://doi.org/10.1038/ncomms13419
pmid: 27876802
|
13 |
C Quast, E Pruesse, P Yilmaz, J Gerken, T Schweer, P Yarza, J Peplies, FO Glöckner. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41(Database issue): D590–D596
pmid: 23193283
|
14 |
PD Schloss, SL Westcott, T Ryabin, JR Hall, M Hartmann, EB Hollister, RA Lesniewski, BB Oakley, DH Parks, CJ Robinson, JW Sahl, B Stres, GG Thallinger, DJ Van Horn, CF Weber. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009; 75(23): 7537–7541
https://doi.org/10.1128/AEM.01541-09
pmid: 19801464
|
15 |
N Segata, J Izard, L Waldron, D Gevers, L Miropolsky, WS Garrett, C Huttenhower. Metagenomic biomarker discovery and explanation. Genome Biol 2011; 12(6): R60
https://doi.org/10.1186/gb-2011-12-6-r60
pmid: 21702898
|
16 |
MG Langille, J Zaneveld, JG Caporaso, D McDonald, D Knights, JA Reyes, JC Clemente, DE Burkepile, RL Vega Thurber, R Knight, RG Beiko, C Huttenhower. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013; 31(9): 814–821
https://doi.org/10.1038/nbt.2676
pmid: 23975157
|
17 |
RE Ley, DA Peterson, JI Gordon. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124(4): 837–848
https://doi.org/10.1016/j.cell.2006.02.017
pmid: 16497592
|
18 |
K Kimura, AL McCartney, MA McConnell, GW Tannock. Analysis of fecal populations of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to the predominant strains. Appl Environ Microbiol 1997; 63(9): 3394–3398
pmid: 9292990
|
19 |
CL Sears. A dynamic partnership: celebrating our gut flora. Anaerobe 2005; 11(5): 247–251
https://doi.org/10.1016/j.anaerobe.2005.05.001
pmid: 16701579
|
20 |
Q Zhu, Z Jin, W Wu, R Gao, B Guo, Z Gao, Y Yang, H Qin. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer. PLoS One 2014; 9(6): e90849
https://doi.org/10.1371/journal.pone.0090849
pmid: 24603888
|
21 |
T Wang, G Cai, Y Qiu, N Fei, M Zhang, X Pang, W Jia, S Cai, L Zhao. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 2012; 6(2): 320–329
https://doi.org/10.1038/ismej.2011.109
pmid: 21850056
|
22 |
T Tahara, E Yamamoto, H Suzuki, R Maruyama, W Chung, J Garriga, J Jelinek, HO Yamano, T Sugai, B An, I Shureiqi, M Toyota, Y Kondo, MR Estécio, JP Issa. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 2014; 74(5): 1311–1318
https://doi.org/10.1158/0008-5472.CAN-13-1865
pmid: 24385213
|
23 |
AN McCoy, F Araújo-Pérez, A Azcárate-Peril, JJ Yeh, RS Sandler, TO Keku. Fusobacterium is associated with colorectal adenomas. PLoS One 2013; 8(1): e53653
https://doi.org/10.1371/journal.pone.0053653
pmid: 23335968
|
24 |
PD Scanlan, F Shanahan, Y Clune, JK Collins, GC O’Sullivan, M O’Riordan, E Holmes, Y Wang, JR Marchesi. Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 2008; 10(3): 789–798
https://doi.org/10.1111/j.1462-2920.2007.01503.x
pmid: 18237311
|
25 |
T Sasada, T Hinoi, Y Saito, T Adachi, Y Takakura, Y Kawaguchi, Y Sotomaru, K Sentani, N Oue, W Yasui, H Ohdan. Chlorinated water modulates the development of colorectal tumors with chromosomal instability and gut microbiota in APC-deficient mice. PLoS One 2015; 10(7): e0132435
https://doi.org/10.1371/journal.pone.0132435
pmid: 26186212
|
26 |
PJ Turnbaugh, RE Ley, MA Mahowald, V Magrini, ER Mardis, JI Gordon. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444(7122): 1027–1031
https://doi.org/10.1038/nature05414
pmid: 17183312
|
27 |
D Scharlau, A Borowicki, N Habermann, T Hofmann, S Klenow, C Miene, U Munjal, K Stein, M Glei. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res 2009; 682(1): 39–53
https://doi.org/10.1016/j.mrrev.2009.04.001
pmid: 19383551
|
28 |
R Balamurugan, E Rajendiran, S George, GV Samuel, BS Ramakrishna. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 2008; 23(8 Pt 1): 1298–1303
https://doi.org/10.1111/j.1440-1746.2008.05490.x
pmid: 18624900
|
29 |
RK Le Leu, JM Winter, CT Christophersen, GP Young, KJ Humphreys, Y Hu, SW Gratz, RB Miller, DL Topping, AR Bird, MA Conlon. Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. Br J Nutr 2015; 114(2): 220–230
https://doi.org/10.1017/S0007114515001750
pmid: 26084032
|
30 |
SH Duncan, A Belenguer, G Holtrop, AM Johnstone, HJ Flint, GE Lobley. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 2007; 73(4): 1073–1078
https://doi.org/10.1128/AEM.02340-06
pmid: 17189447
|
31 |
S Sengupta, JG Muir, PR Gibson. Does butyrate protect from colorectal cancer? J Gastroenterol Hepatol 2006; 21(1 Pt 2): 209–218
https://doi.org/10.1111/j.1440-1746.2006.04213.x
pmid: 16460475
|
32 |
I Sato, M Ito, M Ishizaka, Y Ikunaga, Y Sato, S Yoshida, M Koitabashi, S Tsushima. Thirteen novel deoxynivalenol-degrading bacteria are classified within two genera with distinct degradation mechanisms. FEMS Microbiol Lett 2012; 327(2): 110–117
https://doi.org/10.1111/j.1574-6968.2011.02461.x
pmid: 22098388
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|