|
|
Cerebral regional and network characteristics in asthma patients: a resting-state fMRI study |
Siyi Li1, Peilin Lv2, Min He3, Wenjing Zhang1, Jieke Liu4, Yao Gong5, Ting Wang3, Qiyong Gong1, Yulin Ji3( ), Su Lui1( ) |
1. Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China 2. Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China 3. Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China 4. Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China 5. Department of Geriatric Psychiatry, The Fourth People’s Hospital of Chengdu, Chengdu 610036, China |
|
|
Abstract Asthma is a serious health problem that involves not only the respiratory system but also the central nervous system. Previous studies identified either regional or network alterations in patients with asthma, but inconsistent results were obtained. A key question remains unclear: are the regional and neural network deficits related or are they two independent characteristics in asthma? Answering this question is the aim of this study. By collecting resting-state functional magnetic resonance imaging from 39 patients with asthma and 40 matched health controls, brain functional measures including regional activity (amplitude of low-frequency fluctuations) and neural network function (degree centrality (DC) and functional connectivity) were calculated to systematically characterize the functional alterations. Patients exhibited regional abnormities in the left angular gyrus, right precuneus, and inferior temporal gyrus within the default mode network. Network abnormalities involved both the sensorimotor network and visual network with key regions including the superior frontal gyrus and occipital lobes. Altered DC in the lingual gyrus was correlated with the degree of airway obstruction. This study elucidated different patterns of regional and network changes, thereby suggesting that the two parameters reflect different brain characteristics of asthma. These findings provide evidence for further understanding the potential cerebral alterations in the pathophysiology of asthma.
|
Keywords
asthma
brain
regional activation
functional connectivity
resting-state fMRI
|
Corresponding Author(s):
Yulin Ji,Su Lui
|
Just Accepted Date: 17 January 2020
Online First Date: 08 April 2020
Issue Date: 24 December 2020
|
|
1 |
MA Rosenkranz, RJ Davidson. Affective neural circuitry and mind-body influences in asthma. Neuroimage 2009; 47(3): 972–980
https://doi.org/10.1016/j.neuroimage.2009.05.042
pmid: 19465136
|
2 |
MA Rosenkranz, WW Busse, JF Sheridan, GM Crisafi, RJ Davidson. Are there neurophenotypes for asthma? Functional brain imaging of the interaction between emotion and inflammation in asthma. PLoS One 2012; 7(8): e40921
https://doi.org/10.1371/journal.pone.0040921
pmid: 22870208
|
3 |
J Parker, LJ Wolansky, D Khatry, GP Geba, NA Molfino. Brain magnetic resonance imaging in adults with asthma. Contemp Clin Trials 2011; 32(1): 86–89
https://doi.org/10.1016/j.cct.2010.09.006
pmid: 20854931
|
4 |
J Barr, Y Katz, B Barzilay, E Lahat. ‘Respiratory epilepsy’--does it exist? Clin Neurol Neurosurg 1998; 100(3): 196–198
https://doi.org/10.1016/S0303-8467(98)00040-7
pmid: 9822841
|
5 |
T Ritz, JL Kroll, SV Patel, JR Chen, US Yezhuvath, S Aslan, DA Khan, AE Pinkham, D Rosenfield, ES Brown. Central nervous system signatures of affect in asthma: associations with emotion-induced bronchoconstriction, airway inflammation, and asthma control. J Appl Physiol 2019; 126(6): 1725–1736
https://doi.org/10.1152/japplphysiol.01018.2018
|
6 |
K Pattinson. Functional brain imaging in respiratory medicine. Thorax 2015; 70(6): 598–600
https://doi.org/10.1136/thoraxjnl-2014-206688
pmid: 25589519
|
7 |
MA Rosenkranz, WW Busse, T Johnstone, CA Swenson, GM Crisafi, MM Jackson, JA Bosch, JF Sheridan, RJ Davidson. Neural circuitry underlying the interaction between emotion and asthma symptom exacerbation. Proc Natl Acad Sci USA 2005; 102(37): 13319–13324
https://doi.org/10.1073/pnas.0504365102
pmid: 16141324
|
8 |
WW Busse. The brain and asthma: what are the linkages? Chem Immunol Allergy 2012; 98: 14–31
https://doi.org/10.1159/000336495
pmid: 22767055
|
9 |
XN Zuo, R Ehmke, M Mennes, D Imperati, FX Castellanos, O Sporns, MP Milham. Network centrality in the human functional connectome. Cereb Cortex 2012; 22(8): 1862–1875
https://doi.org/10.1093/cercor/bhr269
pmid: 21968567
|
10 |
QG Li, FQ Zhou, X Huang, X Zhou, C Liu, T Zhang, HY Li, XR Wu, J Wang. Alterations of resting-state functional network centrality in patients with asthma: evidence from a voxel-wise degree centrality analysis. Neuroreport 2018; 29(14): 1151–1156
https://doi.org/10.1097/WNR.0000000000001087
pmid: 29975256
|
11 |
A von Leupoldt, T Sommer, S Kegat, F Eippert, HJ Baumann, H Klose, B Dahme, C Büchel. Down-regulation of insular cortex responses to dyspnea and pain in asthma. Am J Respir Crit Care Med 2009; 180(3): 232–238
https://doi.org/10.1164/rccm.200902-0300OC
pmid: 19483110
|
12 |
X Xiong, H Zhu, T Wang, Y Ji. Altered intrinsic regional brain activity in female asthmatics with or without depressive symptoms: a resting-state functional magnetic resonance imaging study. J Asthma 2016; 53(9): 922–929
https://doi.org/10.3109/02770903.2016.1161050
pmid: 27267695
|
13 |
Y Zhang, Y Yang, R Bian, Y Yin, Z Hou, Y Yue, Z Xu, Y Yuan. Abnormal functional connectivity of ventral anterior insula in asthmatic patients with depression. Neural Plast 2017; 2017: 7838035
https://doi.org/10.1155/2017/7838035
pmid: 28680706
|
14 |
NA Harrison, L Brydon, C Walker, MA Gray, A Steptoe, HD Critchley. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry 2009; 66(5): 407–414
https://doi.org/10.1016/j.biopsych.2009.03.015
pmid: 19423079
|
15 |
S Liu, A Li, Y Liu, H Yan, M Wang, Y Sun, L Fan, M Song, K Xu, J Chen, Y Chen, H Wang, H Guo, P Wan, L Lv, Y Yang, P Li, L Lu, J Yan, H Wang, H Zhang, H Wu, Y Ning, D Zhang, T Jiang, B Liu. Polygenic effects of schizophrenia on hippocampal grey matter volume and hippocampus-medial prefrontal cortex functional connectivity. Br J Psychiatry 2019 Jun 6. [Epub ahead of print] doi:10.1192/bjp.2019.127
https://doi.org/10.1192/bjp.2019.127
pmid: 31169117
|
16 |
KM Lavigne, M Menon, TS Woodward. Functional brain networks underlying evidence integration and delusions in schizophrenia. Schizophr Bull 2020; 46(1): 175– 183
https://doi.org/10.1093/schbul/sbz032
pmid: 31050762
|
17 |
Z Fu, Y Tu, X Di, Y Du, GD Pearlson, JA Turner, BB Biswal, Z Zhang, VD Calhoun, Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamic functional connectivity: an application to schizophrenia. Neuroimage 2018; 180(Pt B): 619–631
|
18 |
C Zhou, X Tang, W You, X Wang, X Zhang, X Zhang, M Yu. Altered patterns of the fractional amplitude of low-frequency fluctuation and functional connectivity between deficit and non-deficit schizophrenia. Front Psychiatry 2019; 10: 680
https://doi.org/10.3389/fpsyt.2019.00680
pmid: 31572248
|
19 |
S Lui, W Deng, X Huang, L Jiang, X Ma, H Chen, T Zhang, X Li, D Li, L Zou, H Tang, XJ Zhou, A Mechelli, DA Collier, JA Sweeney, T Li, Q Gong. Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study. Am J Psychiatry 2009; 166(2): 196–205
https://doi.org/10.1176/appi.ajp.2008.08020183
|
20 |
20. Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB, Milham MP. The oscillating brain: complex and reliable. Neuroimage 2010; 49(2): 1432–1445
pmid: 19782143
|
21 |
J Ashburner. A fast diffeomorphic image registration algorithm. Neuroimage 2007; 38(1): 95–113
https://doi.org/10.1016/j.neuroimage.2007.07.007
pmid: 17761438
|
22 |
YF Zang, Y He, CZ Zhu, QJ Cao, MQ Sui, M Liang, LX Tian, TZ Jiang, YF Wang. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 2007; 29(2): 83–91
https://doi.org/10.1016/j.braindev.2006.07.002
pmid: 16919409
|
23 |
RL Buckner, J Sepulcre, T Talukdar, FM Krienen, H Liu, T Hedden, JR Andrews-Hanna, RA Sperling, KA Johnson. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 2009; 29(6): 1860–1873
https://doi.org/10.1523/JNEUROSCI.5062-08.2009
pmid: 19211893
|
24 |
XN Zuo, C Kelly, JS Adelstein, DF Klein, FX Castellanos, MP Milham. Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage 2010; 49(3): 2163–2177
https://doi.org/10.1016/j.neuroimage.2009.10.080
pmid: 19896537
|
25 |
X Bu, X Hu, L Zhang, B Li, M Zhou, L Lu, X Hu, H Li, Y Yang, W Tang, Q Gong, X Huang. Investigating the predictive value of different resting-state functional MRI parameters in obsessive-compulsive disorder. Transl Psychiatry 2019; 9(1): 17
https://doi.org/10.1038/s41398-018-0362-9
pmid: 30655506
|
26 |
B Bellana, Z Liu, JAE Anderson, M Moscovitch, CL Grady. Laterality effects in functional connectivity of the angular gyrus during rest and episodic retrieval. Neuropsychologia 2016; 80: 24–34
https://doi.org/10.1016/j.neuropsychologia.2015.11.004
pmid: 26559474
|
27 |
BL Foster, V Rangarajan, WR Shirer, J Parvizi. Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex. Neuron 2015; 86(2): 578–590
https://doi.org/10.1016/j.neuron.2015.03.018
pmid: 25863718
|
28 |
E Ciaramelli, CL Grady, M Moscovitch. Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia 2008; 46(7): 1828–1851
https://doi.org/10.1016/j.neuropsychologia.2008.03.022
pmid: 18471837
|
29 |
CG Davey, BJ Harrison. The brain’s center of gravity: how the default mode network helps us to understand the self. World Psychiatry 2018; 17(3): 278–279
https://doi.org/10.1002/wps.20553
pmid: 30192084
|
30 |
ME Raichle, AM MacLeod, AZ Snyder, WJ Powers, DA Gusnard, GL Shulman. A default mode of brain function. Proc Natl Acad Sci USA 2001; 98(2): 676–682
https://doi.org/10.1073/pnas.98.2.676
pmid: 11209064
|
31 |
L Wang, T Wang, S Liu, Z Liang, Y Meng, X Xiong, Y Yang, S Lui, Y Ji. Cerebral anatomical changes in female asthma patients with and without depression compared to healthy controls and patients with depression. J Asthma 2014; 51(9): 927–933
https://doi.org/10.3109/02770903.2014.927482
pmid: 24894744
|
32 |
J Chen, IT Lin, H Zhang, J Lin, S Zheng, M Fan, J Zhang. Reduced cortical thickness, surface area in patients with chronic obstructive pulmonary disease: a surface-based morphometry and neuropsychological study. Brain Imaging Behav 2016; 10(2): 464–476
https://doi.org/10.1007/s11682-015-9403-7
pmid: 25986304
|
33 |
C Wang, Y Ding, B Shen, D Gao, J An, K Peng, G Hou, L Zou, M Jiang, S Qiu. Altered gray matter volume in stable chronic obstructive pulmonary disease with subclinical cognitive impairment: an exploratory study. Neurotox Res 2017; 31(4): 453–463
https://doi.org/10.1007/s12640-016-9690-9
pmid: 28005183
|
34 |
M Herigstad, A Hayen, E Evans, FM Hardinge, RJ Davies, K Wiech, KTS Pattinson. Dyspnea-related cues engage the prefrontal cortex: evidence from functional brain imaging in COPD. Chest 2015; 148(4): 953–961
https://doi.org/10.1378/chest.15-0416
pmid: 26134891
|
35 |
MN Baliki, DR Chialvo, PY Geha, RM Levy, RN Harden, TB Parrish, AV Apkarian. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 2006; 26(47): 12165–12173
https://doi.org/10.1523/JNEUROSCI.3576-06.2006
pmid: 17122041
|
36 |
MN Baliki, PY Geha, HL Fields, AV Apkarian. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 2010; 66(1): 149–160
https://doi.org/10.1016/j.neuron.2010.03.002
pmid: 20399736
|
37 |
X Yan, J Zhang, Q Gong, X Weng. Prolonged high-altitude residence impacts verbal working memory: an fMRI study. Exp Brain Res 2011; 208(3): 437–445
https://doi.org/10.1007/s00221-010-2494-x
pmid: 21107542
|
38 |
W Wei, X Wang, Q Gong, M Fan, J Zhang. Cortical thickness of native Tibetans in the Qinghai-Tibetan Plateau. AJNR Am J Neuroradiol 2017; 38(3): 553–560
https://doi.org/10.3174/ajnr.A5050
pmid: 28104637
|
39 |
X Yan, J Zhang, Q Gong, X Weng. Cerebrovascular reactivity among native-raised high altitude residents: an fMRI study. BMC Neurosci 2011; 12(1): 94
https://doi.org/10.1186/1471-2202-12-94
pmid: 21943208
|
40 |
E Jaspers, JH Balsters, P Kassraian Fard, D Mantini, N Wenderoth. Corticostriatal connectivity fingerprints: probability maps based on resting-state functional connectivity. Hum Brain Mapp 2017; 38(3): 1478–1491
https://doi.org/10.1002/hbm.23466
pmid: 27859903
|
41 |
M Ray, M Sano, JP Wisnivesky, MS Wolf, AD Federman. Asthma control and cognitive function in a cohort of elderly adults. J Am Geriatr Soc 2015; 63(4): 684–691
https://doi.org/10.1111/jgs.13350
pmid: 25854286
|
42 |
H Zhang, X Wang, J Lin, Y Sun, Y Huang, T Yang, S Zheng, M Fan, J Zhang. Reduced regional gray matter volume in patients with chronic obstructive pulmonary disease: a voxel-based morphometry study. AJNR Am J Neuroradiol 2013; 34(2): 334–339
https://doi.org/10.3174/ajnr.A3235
pmid: 22859277
|
43 |
H Zhang, X Wang, J Lin, Y Sun, Y Huang, T Yang, S Zheng, M Fan, J Zhang. Grey and white matter abnormalities in chronic obstructive pulmonary disease: a case-control study. BMJ Open 2012; 2(2): e000844
https://doi.org/10.1136/bmjopen-2012-000844
pmid: 22535793
|
44 |
H Kurahashi, A Okumura, T Koide, Y Ando, H Hirata, M Magota, K Watabane. Posterior reversible encephalopathy syndrome in a child with bronchial asthma. Brain Dev 2006; 28(8): 544–546
https://doi.org/10.1016/j.braindev.2006.02.008
pmid: 16617001
|
45 |
SJ Givre, JS Mindel. Presumed bilateral occipital neurosarcoidosis. A case report. J Neuroophthalmol 1998; 18(1): 32–35
https://doi.org/10.1097/00041327-199803000-00008
pmid: 9532537
|
46 |
L Tyvaert, P Devos, M Deloizy, A Belhadia, T Stekelorom. Peripheral and central neurological manifestations in a case of Churg Strauss syndrome. Rev Neurol (Paris) 2004; 160(1): 89–92 ( in French)
https://doi.org/10.1016/S0035-3787(04)70853-X
pmid: 14978400
|
47 |
Y Zang, T Jiang, Y Lu, Y He, L Tian. Regional homogeneity approach to fMRI data analysis. Neuroimage 2004; 22(1): 394–400
https://doi.org/10.1016/j.neuroimage.2003.12.030
pmid: 15110032
|
48 |
H Xin, H Li, H Yu, J Yu, J Zhang, W Wang, D Peng. Disrupted resting-state spontaneous neural activity in stable COPD. Int J Chron Obstruct Pulmon Dis 2019; 14: 499–508
https://doi.org/10.2147/COPD.S190671
pmid: 30880940
|
49 |
W Li, W Qin, H Liu, L Fan, J Wang, T Jiang, C Yu. Subregions of the human superior frontal gyrus and their connections. Neuroimage 2013; 78: 46–58
https://doi.org/10.1016/j.neuroimage.2013.04.011
pmid: 23587692
|
50 |
BT Yeo, FM Krienen, J Sepulcre, MR Sabuncu, D Lashkari, M Hollinshead, JL Roffman, JW Smoller, L Zöllei, JR Polimeni, B Fischl, H Liu, RL Buckner. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 2011; 106(3): 1125–1165
https://doi.org/10.1152/jn.00338.2011
pmid: 21653723
|
51 |
Y Liu, W Qin, R Li, S Yu, Y He, Y Xie. Investigation on the neural mechanism of hypnosis-based respiratory control using functional MRI. Contrast Media Mol Imaging 2018; 2018: 8182542
https://doi.org/10.1155/2018/8182542
pmid: 30065621
|
52 |
X Gao, Y Xiao, P Lv, W Zhang, Y Gong, T Wang, Q Gong, Y Ji, S Lui. Altered brain network integrity in patients with asthma: a structural connectomic diffusion tensor imaging study. Respir Physiol Neurobiol 2019; 266: 89–94
https://doi.org/10.1016/j.resp.2019.05.004
pmid: 31085322
|
53 |
M Herigstad, OK Faull, A Hayen, E Evans, FM Hardinge, K Wiech, KTS Pattinson. Treating breathlessness via the brain: changes in brain activity over a course of pulmonary rehabilitation. Eur Respir J 2017; 50(3): 1701029
https://doi.org/10.1183/13993003.01029-2017
pmid: 28899937
|
54 |
MX Xia, X Ding, J Qi, J Gu, G Hu, XL Sun. Inhaled budesonide protects against chronic asthma-induced neuroinflammation in mouse brain. J Neuroimmunol 2014; 273(1-2): 53–57
https://doi.org/10.1016/j.jneuroim.2014.06.005
pmid: 24993070
|
55 |
RS Millington, M James-Galton, MN Maia Da Silva, GT Plant, H Bridge. Lateralized occipital degeneration in posterior cortical atrophy predicts visual field deficits. Neuroimage Clin 2017; 14: 242–249
https://doi.org/10.1016/j.nicl.2017.01.012
pmid: 28180083
|
56 |
W Heo, JS Kim, CK Chung, SK Lee. Relationship between cortical resection and visual function after occipital lobe epilepsy surgery. J Neurosurg 2018; 129(2): 524–532
https://doi.org/10.3171/2017.5.JNS162963
pmid: 29076788
|
57 |
SL Snyder, MS Buchsbaum, RC Krishna. Unusual visual symptoms and Ganser-like state due to cerebral injury: a case study using (18)F-deoxyglucose positron emission tomography. Behav Neurol 1998; 11(1): 51–54
https://doi.org/10.1155/1998/907914
pmid: 11568402
|
58 |
C Madjar, CJ Gauthier, P Bellec, RM Birn, JC Brooks, RD Hoge. Task-related BOLD responses and resting-state functional connectivity during physiological clamping of end-tidal CO2. Neuroimage 2012; 61(1): 41–49
https://doi.org/10.1016/j.neuroimage.2012.02.080
pmid: 22418394
|
59 |
P O’Herron, PY Chhatbar, M Levy, Z Shen, AE Schramm, Z Lu, P Kara. Neural correlates of single-vessel haemodynamic responses in vivo. Nature 2016; 534(7607): 378–382
https://doi.org/10.1038/nature17965
pmid: 27281215
|
60 |
S Miners, H Moulding, R de Silva, S Love. Reduced vascular endothelial growth factor and capillary density in the occipital cortex in dementia with Lewy bodies. Brain Pathol 2014; 24(4): 334–343
https://doi.org/10.1111/bpa.12130
pmid: 24521289
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|