|
|
Recent advances in myeloid-derived suppressor cell biology |
Mahmoud Mohammad Yaseen1( ), Nizar Mohammad Abuharfeil1, Homa Darmani2, Ammar Daoud3 |
1. Department of Biotechnology and Genetic Engineering 2. Department of Applied Biology, Faculty of Science and Arts 3. Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan |
|
|
Abstract In recent years, studying the role of myeloid-derived suppressor cells (MDSCs) in many pathological inflammatory conditions has become a very active research area. Although the role of MDSCs in cancer is relatively well established, their role in non-cancerous pathological conditions remains in its infancy resulting in much confusion. Our objectives in this review are to address some recent advances in MDSC research in order to minimize such confusion and to provide an insight into their function in the context of other diseases. The following topics will be specifically focused upon: (1) definition and characterization of MDSCs; (2) whether all MDSC populations consist of immature cells; (3) technical issues in MDSC isolation, estimation and characterization; (4) the origin of MDSCs and their anatomical distribution in health and disease; (5) mediators of MDSC expansion and accumulation; (6) factors that determine the expansion of one MDSC population over the other; (7) the Yin and Yang roles of MDSCs. Moreover, the functions of MDSCs will be addressed throughout the text.
|
Keywords
non-human primates (rhesus macaques)
myeloid-derived pro-inflammatory cells (MDPCs)
autoimmune disorders
alloimmune responses
pregnancy
mature MDSCs
multiple sclerosis
Yin-Yang law of MDSCs
|
Corresponding Author(s):
Mahmoud Mohammad Yaseen
|
Just Accepted Date: 24 July 2020
Online First Date: 04 September 2020
Issue Date: 23 April 2021
|
|
1 |
MG Schwacha, SR Scroggins, RK Montgomery, SE Nicholson, AP Cap. Burn injury is associated with an infiltration of the wound site with myeloid-derived suppressor cells. Cell Immunol 2019; 338: 21–26
https://doi.org/10.1016/j.cellimm.2019.03.001
pmid: 30902343
|
2 |
M Ahmadi, M Mohammadi, M Ali-Hassanzadeh, M Zare, B Gharesi-Fard. MDSCs in pregnancy: critical players for a balanced immune system at the feto-maternal interface. Cell Immunol 2019; 346: 103990
https://doi.org/10.1016/j.cellimm.2019.103990
pmid: 31703912
|
3 |
S Ostrand-Rosenberg, P Sinha, C Figley, R Long, D Park, D Carter, VK Clements. Frontline Science: Myeloid-derived suppressor cells (MDSCs) facilitate maternal-fetal tolerance in mice. J Leukoc Biol 2017; 101(5): 1091–1101
https://doi.org/10.1189/jlb.1HI1016-306RR
pmid: 28007981
|
4 |
IT Schrijver, C Théroude, T Roger. Myeloid-derived suppressor cells in sepsis. Front Immunol 2019; 10: 327
https://doi.org/10.3389/fimmu.2019.00327
pmid: 30873175
|
5 |
E Medina, D Hartl. Myeloid-derived suppressor cells in infection: a general overview. J Innate Immun 2018; 10(5-6): 407–413
https://doi.org/10.1159/000489830
pmid: 29945134
|
6 |
A Salminen, K Kaarniranta, A Kauppinen. The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process. Ageing Res Rev 2018; 48: 1–10
https://doi.org/10.1016/j.arr.2018.09.001
pmid: 30248408
|
7 |
T Nakamura, H Ushigome. Myeloid-derived suppressor cells as a regulator of immunity in organ transplantation. Int J Mol Sci 2018; 19(8): E2357
https://doi.org/10.3390/ijms19082357
pmid: 30103447
|
8 |
A Salminen. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57: 100998
https://doi.org/10.1016/j.arr.2019.100998
pmid: 31838128
|
9 |
C Guo, F Hu, H Yi, Z Feng, C Li, L Shi, Y Li, H Liu, X Yu, H Wang, J Li, Z Li, XY Wang. Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis. Ann Rheum Dis 2016; 75(1): 278–285
https://doi.org/10.1136/annrheumdis-2014-205508
pmid: 25371442
|
10 |
H Zhang, S Wang, Y Huang, H Wang, J Zhao, F Gaskin, N Yang, SM Fu. Myeloid-derived suppressor cells are proinflammatory and regulate collagen-induced arthritis through manipulating Th17 cell differentiation. Clin Immunol 2015; 157(2): 175–186
https://doi.org/10.1016/j.clim.2015.02.001
pmid: 25680967
|
11 |
H Wu, Y Zhen, Z Ma, H Li, J Yu, ZG Xu, XY Wang, H Yi, YG Yang. Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci Transl Med 2016; 8(331): 331ra40
https://doi.org/10.1126/scitranslmed.aae0482
pmid: 27009269
|
12 |
DI Gabrilovich, V Bronte, SH Chen, MP Colombo, A Ochoa, S Ostrand-Rosenberg, H Schreiber. The terminology issue for myeloid-derived suppressor cells. Cancer Res 2007; 67(1): 425
https://doi.org/10.1158/0008-5472.CAN-06-3037
pmid: 17210725
|
13 |
DI Gabrilovich. Myeloid-derived suppressor cells. Cancer Immunol Res 2017; 5(1): 3–8
https://doi.org/10.1158/2326-6066.CIR-16-0297
pmid: 28052991
|
14 |
V Kumar, S Patel, E Tcyganov, DI Gabrilovich. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 2016; 37(3): 208–220
https://doi.org/10.1016/j.it.2016.01.004
pmid: 26858199
|
15 |
V Bronte, S Brandau, SH Chen, MP Colombo, AB Frey, TF Greten, S Mandruzzato, PJ Murray, A Ochoa, S Ostrand-Rosenberg, PC Rodriguez, A Sica, V Umansky, RH Vonderheide, DI Gabrilovich. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 2016; 7(1): 12150
https://doi.org/10.1038/ncomms12150
pmid: 27381735
|
16 |
CA Dumitru, K Moses, S Trellakis, S Lang, S Brandau. Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 2012; 61(8): 1155–1167
https://doi.org/10.1007/s00262-012-1294-5
pmid: 22692756
|
17 |
SL Highfill, PC Rodriguez, Q Zhou, CA Goetz, BH Koehn, R Veenstra, PA Taylor, A Panoskaltsis-Mortari, JS Serody, DH Munn, J Tolar, AC Ochoa, BR Blazar. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood 2010; 116(25): 5738–5747
https://doi.org/10.1182/blood-2010-06-287839
pmid: 20807889
|
18 |
O Goldmann, A Beineke, E Medina. Identification of a novel subset of myeloid-derived suppressor cells during chronic staphylococcal infection that resembles immature eosinophils. J Infect Dis 2017; 216(11): 1444–1451
https://doi.org/10.1093/infdis/jix494
pmid: 29029332
|
19 |
MM Yaseen, MM Yaseen, MA Alqudah. Broadly neutralizing antibodies: an approach to control HIV-1 infection. Int Rev Immunol 2017; 36(1): 31–40
https://doi.org/10.1080/08830185.2016.1225301
pmid: 27739924
|
20 |
ZB Bjornson-Hooper, GK Fragiadakis, MH Spitzer, D Madhireddy, D McIlwain, GP Nolan. A comprehensive atlas of immunological differences between humans, mice and non-human primates. Biorxiv 2019; 10.1101/574160
|
21 |
DA Grow, JR McCarrey, CS Navara. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson’s disease. Stem Cell Res (Amst) 2016; 17(2): 352–366
https://doi.org/10.1016/j.scr.2016.08.013
pmid: 27622596
|
22 |
KK Watson, ML Platt. Of mice and monkeys: using non-human primate models to bridge mouse- and human-based investigations of autism spectrum disorders. J Neurodev Disord 2012; 4(1): 21
https://doi.org/10.1186/1866-1955-4-21
pmid: 22958282
|
23 |
AF Zahorchak, MB Ezzelarab, L Lu, HR Turnquist, AW Thomson. In vivo mobilization and functional characterization of nonhuman primate monocytic myeloid-derived suppressor cells. Am J Transplant 2016; 16(2): 661–671
https://doi.org/10.1111/ajt.13454
pmid: 26372923
|
24 |
A Luyckx, E Schouppe, O Rutgeerts, C Lenaerts, S Fevery, T Devos, D Dierickx, M Waer, JA Van Ginderachter, AD Billiau. G-CSF stem cell mobilization in human donors induces polymorphonuclear and mononuclear myeloid-derived suppressor cells. Clin Immunol 2012; 143(1): 83–87
https://doi.org/10.1016/j.clim.2012.01.011
pmid: 22341087
|
25 |
BD Hock, KA Mackenzie, NB Cross, KG Taylor, MJ Currie, BA Robinson, JW Simcock, JL McKenzie. Renal transplant recipients have elevated frequencies of circulating myeloid-derived suppressor cells. Nephrol Dial Transplant 2012; 27(1): 402–410
https://doi.org/10.1093/ndt/gfr264
pmid: 21617199
|
26 |
AF Zahorchak, A Perez-Gutierrez, MB Ezzelarab, AW Thomson. Monocytic myeloid-derived suppressor cells generated from rhesus macaque bone marrow enrich for regulatory T cells. Cell Immunol 2018; 329: 50–55
https://doi.org/10.1016/j.cellimm.2018.04.013
pmid: 29803290
|
27 |
Y Sui, B Frey, Y Wang, R Billeskov, S Kulkarni, K McKinnon, T Rourke, L Fritts, CJ Miller, JA Berzofsky. Paradoxical myeloid-derived suppressor cell reduction in the bone marrow of SIV chronically infected macaques. PLoS Pathog 2017; 13(5): e1006395
https://doi.org/10.1371/journal.ppat.1006395
pmid: 28498847
|
28 |
A Lin, F Liang, EA Thompson, M Vono, S Ols, G Lindgren, K Hassett, H Salter, G Ciaramella, K Loré. Rhesus macaque myeloid-derived suppressor cells demonstrate T cell inhibitory functions and are transiently increased after vaccination. J Immunol 2018; 200(1): 286–294
https://doi.org/10.4049/jimmunol.1701005
pmid: 29180488
|
29 |
T Condamine, GA Dominguez, JI Youn, AV Kossenkov, S Mony, K Alicea-Torres, E Tcyganov, A Hashimoto, Y Nefedova, C Lin, S Partlova, A Garfall, DT Vogl, X Xu, SC Knight, G Malietzis, GH Lee, E Eruslanov, SM Albelda, X Wang, JL Mehta, M Bewtra, A Rustgi, N Hockstein, R Witt, G Masters, B Nam, D Smirnov, MA Sepulveda, DI Gabrilovich. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol 2016; 1(2): aaf8943
https://doi.org/10.1126/sciimmunol.aaf8943
pmid: 28417112
|
30 |
CR Millrud, C Bergenfelz, K Leandersson. On the origin of myeloid-derived suppressor cells. Oncotarget 2017; 8(2): 3649–3665
https://doi.org/10.18632/oncotarget.12278
pmid: 27690299
|
31 |
S Sangaletti, G Talarico, C Chiodoni, B Cappetti, L Botti, P Portararo, A Gulino, FM Consonni, A Sica, G Randon, M Di Nicola, C Tripodo, MP Colombo. SPARC is a new myeloid-derived suppressor cell marker licensing suppressive activities. Front Immunol 2019; 10: 1369
https://doi.org/10.3389/fimmu.2019.01369
pmid: 31281314
|
32 |
MRI Young, MA Wright, Y Lozano, MM Prechel, J Benefield, JP Leonetti, SL Collins, GJ Petruzzelli. Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. Int J Cancer 1997; 74(1): 69–74
https://doi.org/10.1002/(SICI)1097-0215(19970220)74:1<69::AID-IJC12>3.0.CO;2-D
pmid: 9036872
|
33 |
AS Pak, MA Wright, JP Matthews, SL Collins, GJ Petruzzelli, MR Young. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34+ cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1995; 1(1): 95–103
pmid: 9815891
|
34 |
A Romano, NL Parrinello, C Vetro, S Forte, A Chiarenza, A Figuera, G Motta, GA Palumbo, M Ippolito, U Consoli, F Di Raimondo. Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin lymphoma patients treated up-front with a risk-adapted strategy. Br J Haematol 2015; 168(5): 689–700
https://doi.org/10.1111/bjh.13198
pmid: 25376846
|
35 |
D Vasquez-Dunddel, F Pan, Q Zeng, M Gorbounov, E Albesiano, J Fu, RL Blosser, AJ Tam, T Bruno, H Zhang, D Pardoll, Y Kim. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 2013; 123(4): 1580–1589
https://doi.org/10.1172/JCI60083
pmid: 23454751
|
36 |
H Fan, JA Cook. Molecular mechanisms of endotoxin tolerance. J Endotoxin Res 2004; 10(2): 71–84
https://doi.org/10.1179/096805104225003997
pmid: 15119998
|
37 |
A Sinistro, C Ciaprini, S Natoli, E Sussarello, FC Carducci, C Almerighi, M Capozzi, F Bolacchi, G Rocchi, A Bergamini. Lipopolysaccharide desensitizes monocytes-macrophages to CD40 ligand stimulation. Immunology 2007; 122(3): 362–370
https://doi.org/10.1111/j.1365-2567.2007.02648.x
pmid: 17608691
|
38 |
B Xiu, Y Lin, DM Grote, SC Ziesmer, MP Gustafson, ML Maas, Z Zhang, AB Dietz, LF Porrata, AJ Novak, AB Liang, ZZ Yang, SM Ansell. IL-10 induces the development of immunosuppressive CD14+HLA-DRlow/− monocytes in B-cell non-Hodgkin lymphoma. Blood Cancer J 2015; 5(7): e328
https://doi.org/10.1038/bcj.2015.56
pmid: 26230952
|
39 |
R Landmann, C Ludwig, R Obrist, JP Obrecht. Effect of cytokines and lipopolysaccharide on CD14 antigen expression in human monocytes and macrophages. J Cell Biochem 1991; 47(4): 317–329
https://doi.org/10.1002/jcb.240470406
pmid: 1724447
|
40 |
O Marini, S Costa, D Bevilacqua, F Calzetti, N Tamassia, C Spina, D De Sabata, E Tinazzi, C Lunardi, MT Scupoli, C Cavallini, E Zoratti, I Tinazzi, A Marchetta, A Vassanelli, M Cantini, G Gandini, A Ruzzenente, A Guglielmi, F Missale, W Vermi, C Tecchio, MA Cassatella, P Scapini. Mature CD10+ and immature CD10− neutrophils present in G-CSF-treated donors display opposite effects on T cells. Blood 2017; 129(10): 1343–1356
https://doi.org/10.1182/blood-2016-04-713206
pmid: 28053192
|
41 |
C Carmona-Rivera, MJ Kaplan. Low-density granulocytes: a distinct class of neutrophils in systemic autoimmunity. Semin Immunopathol 2013; 35(4): 455–463
https://doi.org/10.1007/s00281-013-0375-7
pmid: 23553215
|
42 |
O Marini, C Spina, E Mimiola, A Cassaro, G Malerba, G Todeschini, O Perbellini, M Scupoli, G Carli, D Facchinelli, M Cassatella, P Scapini, C Tecchio. Identification of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients. Oncotarget 2016; 7(19): 27676–27688
https://doi.org/10.18632/oncotarget.8507
pmid: 27050283
|
43 |
S Lang, K Bruderek, C Kaspar, B Höing, O Kanaan, N Dominas, T Hussain, F Droege, C Eyth, B Hadaschik, S Brandau. Clinical relevance and suppressive capacity of human myeloid-derived suppressor cell subsets. Clin Cancer Res 2018; 24(19): 4834–4844
https://doi.org/10.1158/1078-0432.CCR-17-3726
pmid: 29914893
|
44 |
C Bergenfelz, AM Larsson, K von Stedingk, S Gruvberger-Saal, K Aaltonen, S Jansson, H Jernström, H Janols, M Wullt, A Bredberg, L Rydén, K Leandersson. Systemic monocytic-MDSCs are generated from monocytes and correlate with disease progression in breast cancer patients. PLoS One 2015; 10(5): e0127028
https://doi.org/10.1371/journal.pone.0127028
pmid: 25992611
|
45 |
I Poschke, D Mougiakakos, J Hansson, GV Masucci, R Kiessling. Immature immunosuppressive CD14+HLA-DR−/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 2010; 70(11): 4335–4345
https://doi.org/10.1158/0008-5472.CAN-09-3767
pmid: 20484028
|
46 |
C Sunderkötter, T Nikolic, MJ Dillon, N Van Rooijen, M Stehling, DA Drevets, PJ Leenen. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004; 172(7): 4410–4417
https://doi.org/10.4049/jimmunol.172.7.4410
pmid: 15034056
|
47 |
A Mantovani, A Sica, P Allavena, C Garlanda, M Locati. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 2009; 70(5): 325–330
https://doi.org/10.1016/j.humimm.2009.02.008
pmid: 19236898
|
48 |
SK Biswas, E Lopez-Collazo. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 2009; 30(10): 475–487
https://doi.org/10.1016/j.it.2009.07.009
pmid: 19781994
|
49 |
J Pillay, T Tak, VM Kamp, L Koenderman. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci 2013; 70(20): 3813–3827
https://doi.org/10.1007/s00018-013-1286-4
pmid: 23423530
|
50 |
N Obermajer, R Muthuswamy, J Lesnock, RP Edwards, P Kalinski. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 2011; 118(20): 5498–5505
https://doi.org/10.1182/blood-2011-07-365825
pmid: 21972293
|
51 |
R Domenis, D Cesselli, B Toffoletto, E Bourkoula, F Caponnetto, I Manini, AP Beltrami, T Ius, M Skrap, C Di Loreto, G Gri. Systemic T cells immunosuppression of glioma stem cell-derived exosomes is mediated by monocytic myeloid-derived suppressor cells. PLoS One 2017; 12(1): e0169932
https://doi.org/10.1371/journal.pone.0169932
pmid: 28107450
|
52 |
N Obermajer, P Kalinski. Generation of myeloid-derived suppressor cells using prostaglandin E2. Transplant Res 2012; 1(1): 15
https://doi.org/10.1186/2047-1440-1-15
pmid: 23369567
|
53 |
F Veglia, M Perego, D Gabrilovich. Myeloid-derived suppressor cells coming of age. Nat Immunol 2018; 19(2): 108–119
https://doi.org/10.1038/s41590-017-0022-x
pmid: 29348500
|
54 |
I Dufait, JK Schwarze, T Liechtenstein, W Leonard, H Jiang, D Escors, M De Ridder, K Breckpot. Ex vivo generation of myeloid-derived suppressor cells that model the tumor immunosuppressive environment in colorectal cancer. Oncotarget 2015; 6(14): 12369–12382
https://doi.org/10.18632/oncotarget.3682
pmid: 25869209
|
55 |
S Casacuberta-Serra, M Parés, A Golbano, E Coves, C Espejo, J Barquinero. Myeloid-derived suppressor cells can be efficiently generated from human hematopoietic progenitors and peripheral blood monocytes. Immunol Cell Biol 2017; 95(6): 538–548
https://doi.org/10.1038/icb.2017.4
pmid: 28108746
|
56 |
Y Mao, I Poschke, E Wennerberg, Y Pico de Coaña, S Egyhazi Brage, I Schultz, J Hansson, G Masucci, A Lundqvist, R Kiessling. Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res 2013; 73(13): 3877–3887
https://doi.org/10.1158/0008-5472.CAN-12-4115
pmid: 23633486
|
57 |
JC Rodrigues, GC Gonzalez, L Zhang, G Ibrahim, JJ Kelly, MP Gustafson, Y Lin, AB Dietz, PA Forsyth, VW Yong, IF Parney. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro-oncol 2010; 12(4): 351–365
https://doi.org/10.1093/neuonc/nop023
pmid: 20308313
|
58 |
K Moses, S Brandau. Human neutrophils: their role in cancer and relation to myeloid-derived suppressor cells. Semin Immunol 2016; 28(2): 187–196
https://doi.org/10.1016/j.smim.2016.03.018
pmid: 27067179
|
59 |
Q Li, PY Pan, P Gu, D Xu, SH Chen. Role of immature myeloid Gr-1+ cells in the development of antitumor immunity. Cancer Res 2004; 64(3): 1130–1139
https://doi.org/10.1158/0008-5472.CAN-03-1715
pmid: 14871848
|
60 |
Y Narita, D Wakita, T Ohkur, K Chamoto, T Nishimura. Potential differentiation of tumor bearing mouse CD11b+Gr-1+ immature myeloid cells into both suppressor macrophages and immunostimulatory dendritic cells. Biomed Res 2009; 30(1): 7–15
https://doi.org/10.2220/biomedres.30.7
pmid: 19265258
|
61 |
JM Haverkamp, SA Crist, BD Elzey, C Cimen, TL Ratliff. In vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory site. Eur J Immunol 2011; 41(3): 749–759
https://doi.org/10.1002/eji.201041069
pmid: 21287554
|
62 |
E Grützner, R Stirner, L Arenz, AP Athanasoulia, K Schrödl, C Berking, JR Bogner, R Draenert. Kinetics of human myeloid-derived suppressor cells after blood draw. J Transl Med 2016; 14(1): 2
https://doi.org/10.1186/s12967-015-0755-y
pmid: 26733325
|
63 |
S Trellakis, K Bruderek, J Hütte, M Elian, TK Hoffmann, S Lang, S Brandau. Granulocytic myeloid-derived suppressor cells are cryosensitive and their frequency does not correlate with serum concentrations of colony-stimulating factors in head and neck cancer. Innate Immun 2013; 19(3): 328–336
https://doi.org/10.1177/1753425912463618
pmid: 23160385
|
64 |
S Brandau, K Moses, S Lang. The kinship of neutrophils and granulocytic myeloid-derived suppressor cells in cancer: cousins, siblings or twins? Semin Cancer Biol 2013; 23(3): 171–182
https://doi.org/10.1016/j.semcancer.2013.02.007
pmid: 23459190
|
65 |
P Scapini, MA Cassatella. Social networking of human neutrophils within the immune system. Blood 2014; 124(5): 710–719
https://doi.org/10.1182/blood-2014-03-453217
pmid: 24923297
|
66 |
MC Apodaca, AE Wright, AM Riggins, WP Harris, RS Yeung, L Yu, C Morishima. Characterization of a whole blood assay for quantifying myeloid-derived suppressor cells. J Immunother Cancer 2019; 7(1): 230
https://doi.org/10.1186/s40425-019-0674-1
pmid: 31462270
|
67 |
A Flörcken, A Takvorian, A Singh, A Gerhardt, BN Ostendorf, B Dörken, A Pezzutto, J Westermann. Myeloid-derived suppressor cells in human peripheral blood: optimized quantification in healthy donors and patients with metastatic renal cell carcinoma. Immunol Lett 2015; 168(2): 260–267
https://doi.org/10.1016/j.imlet.2015.10.001
pmid: 26462434
|
68 |
L Velten, SF Haas, S Raffel, S Blaszkiewicz, S Islam, BP Hennig, C Hirche, C Lutz, EC Buss, D Nowak, T Boch, WK Hofmann, AD Ho, W Huber, A Trumpp, MA Essers, LM Steinmetz. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 2017; 19(4): 271–281
https://doi.org/10.1038/ncb3493
pmid: 28319093
|
69 |
JL Schultze, E Mass, A Schlitzer. Emerging principles in myelopoiesis at homeostasis and during infection and inflammation. Immunity 2019; 50(2): 288–301
https://doi.org/10.1016/j.immuni.2019.01.019
pmid: 30784577
|
70 |
S Kusmartsev, DI Gabrilovich. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 2006; 55(3): 237–245
https://doi.org/10.1007/s00262-005-0048-z
pmid: 16047143
|
71 |
F Zhao, S Obermann, R von Wasielewski, L Haile, MP Manns, F Korangy, TF Greten. Increase in frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology 2009; 128(1): 141–149
https://doi.org/10.1111/j.1365-2567.2009.03105.x
pmid: 19689743
|
72 |
D Ilkovitch, DM Lopez. The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res 2009; 69(13): 5514–5521
https://doi.org/10.1158/0008-5472.CAN-08-4625
pmid: 19549903
|
73 |
B Almand, JI Clark, E Nikitina, J van Beynen, NR English, SC Knight, DP Carbone, DI Gabrilovich. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 2001; 166(1): 678–689
https://doi.org/10.4049/jimmunol.166.1.678
pmid: 11123353
|
74 |
Y Luan, E Mosheir, MC Menon, D Wilson, C Woytovich, J Ochando, B Murphy. Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4+ Foxp3+ Treg expansion. Am J Transplant 2013; 13(12): 3123–3131
https://doi.org/10.1111/ajt.12461
pmid: 24103111
|
75 |
N Köstlin, C Schoetensack, J Schwarz, B Spring, A Marmé, R Goelz, G Brodbeck, CF Poets, C Gille. Granulocytic myeloid-derived suppressor cells (GR-MDSC) in breast milk (BM); GR-MDSC accumulate in human BM and modulate T-cell and monocyte function. Front Immunol 2018; 9: 1098
https://doi.org/10.3389/fimmu.2018.01098
pmid: 29868036
|
76 |
M Roussel, PB Jr Ferrell, AR Greenplate, F Lhomme, S Le Gallou, KE Diggins, DB Johnson, JM Irish. Mass cytometry deep phenotyping of human mononuclear phagocytes and myeloid-derived suppressor cells from human blood and bone marrow. J Leukoc Biol 2017; 102(2): 437–447
https://doi.org/10.1189/jlb.5MA1116-457R
pmid: 28400539
|
77 |
GT Görgün, G Whitehill, JL Anderson, T Hideshima, C Maguire, J Laubach, N Raje, NC Munshi, PG Richardson, KC Anderson. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 2013; 121(15): 2975–2987
https://doi.org/10.1182/blood-2012-08-448548
pmid: 23321256
|
78 |
MR Porembka, JB Mitchem, BA Belt, CS Hsieh, HM Lee, J Herndon, WE Gillanders, DC Linehan, P Goedegebuure. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother 2012; 61(9): 1373–1385
https://doi.org/10.1007/s00262-011-1178-0
pmid: 22215137
|
79 |
CP Verschoor, J Johnstone, J Millar, MG Dorrington, M Habibagahi, A Lelic, M Loeb, JL Bramson, DM Bowdish. Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol 2013; 93(4): 633–637
https://doi.org/10.1189/jlb.0912461
pmid: 23341539
|
80 |
RR Flores, CL Clauson, J Cho, BC Lee, SJ McGowan, DJ Baker, LJ Niedernhofer, PD Robbins. Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-kB-dependent mechanism. Aging Cell 2017; 16(3): 480–487
https://doi.org/10.1111/acel.12571
pmid: 28229533
|
81 |
S Bulterijs, RS Hull, VC Björk, AG Roy. It is time to classify biological aging as a disease. Front Genet 2015; 6: 205
https://doi.org/10.3389/fgene.2015.00205
pmid: 26150825
|
82 |
LA Gavrilov, NS Gavrilova. Is aging a disease? Biodemographers’ point of view. Adv Gerontol 2017; 30(6): 841–842 (in Russian)
pmid: 29608825
|
83 |
The Lancet Diabetes Endocrinology. Opening the door to treating ageing as a disease. Lancet Diabetes Endocrinol 2018; 6(8): 587
https://doi.org/10.1016/s2213-8587(18)30214-6
|
84 |
AC Ochoa, AH Zea, C Hernandez, PC Rodriguez. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 2007; 13(2): 721s–726s
https://doi.org/10.1158/1078-0432.CCR-06-2197
pmid: 17255300
|
85 |
N Mirza, M Fishman, I Fricke, M Dunn, AM Neuger, TJ Frost, RM Lush, S Antonia, DI Gabrilovich. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 2006; 66(18): 9299–9307
https://doi.org/10.1158/0008-5472.CAN-06-1690
pmid: 16982775
|
86 |
CM Diaz-Montero, ML Salem, MI Nishimura, E Garrett-Mayer, DJ Cole, AJ Montero. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 2009; 58(1): 49–59
https://doi.org/10.1007/s00262-008-0523-4
pmid: 18446337
|
87 |
O Goñi, P Alcaide, M Fresno. Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G(Gr1+)CD11b+ immature myeloid suppressor cells. Int Immunol 2002; 14(10): 1125–1134
https://doi.org/10.1093/intimm/dxf076
pmid: 12356678
|
88 |
L Brudecki, DA Ferguson, CE McCall, M El Gazzar. Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infect Immun 2012; 80(6): 2026–2034
https://doi.org/10.1128/IAI.00239-12
pmid: 22451518
|
89 |
R Marhaba, M Vitacolonna, D Hildebrand, M Baniyash, P Freyschmidt-Paul, M Zöller. The importance of myeloid-derived suppressor cells in the regulation of autoimmune effector cells by a chronic contact eczema. J Immunol 2007; 179(8): 5071–5081
https://doi.org/10.4049/jimmunol.179.8.5071
pmid: 17911592
|
90 |
LA Haile, R von Wasielewski, J Gamrekelashvili, C Kruger, O Bachmann, AM Westendorf, J Buer, R Liblau, MP Manns, F Korangy, TF Greten. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 2008; 135(3): 871–881e5
https://doi.org/10.1053/j.gastro.2008.06.032
|
91 |
ZN Zhang, N Yi, TW Zhang, LL Zhang, X Wu, M Liu, YJ Fu, SJ He, YJ Jiang, HB Ding, ZX Chu, H Shang. Myeloid-derived suppressor cells associated with disease progression in primary HIV infection: PD-L1 blockade attenuates inhibition. J Acquir Immune Defic Syndr 2017; 76(2): 200–208
https://doi.org/10.1097/QAI.0000000000001471
pmid: 28570288
|
92 |
RS Tacke, HC Lee, C Goh, J Courtney, SJ Polyak, HR Rosen, YS Hahn. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology 2012; 55(2): 343–353
https://doi.org/10.1002/hep.24700
pmid: 21953144
|
93 |
MJ Delano, PO Scumpia, JS Weinstein, D Coco, S Nagaraj, KM Kelly-Scumpia, KA O’Malley, JL Wynn, S Antonenko, SZ Al-Quran, R Swan, CS Chung, MA Atkinson, R Ramphal, DI Gabrilovich, WH Reeves, A Ayala, J Phillips, D Laface, PG Heyworth, M Clare-Salzler, LL Moldawer. MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 2007; 204(6): 1463–1474
https://doi.org/10.1084/jem.20062602
pmid: 17548519
|
94 |
M Bosiljcic, RA Cederberg, MJ Hamilton, NE LePard, BT Harbourne, JL Collier, EC Halvorsen, R Shi, SE Franks, AY Kim, JP Banáth, M Hamer, FM Rossi, KL Bennewith. Targeting myeloid-derived suppressor cells in combination with primary mammary tumor resection reduces metastatic growth in the lungs. Breast Cancer Res 2019; 21(1): 103
https://doi.org/10.1186/s13058-019-1189-x
pmid: 31488209
|
95 |
JI Youn, S Nagaraj, M Collazo, DI Gabrilovich. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 2008; 181(8): 5791–5802
https://doi.org/10.4049/jimmunol.181.8.5791
pmid: 18832739
|
96 |
D Sarkar, MK Srivastava, L Zhu, M Harris-White, UK Kar, M Huang, MF Johnson, JM Lee, D Elashoff, R Strieter, S Dubinett, S Sharma. Correction: myeloid suppressor cell depletion augments antitumor activity in lung cancer. PLoS One 2012; 7(7): e40677
https://doi.org/10.1371/annotation/5c756e7d-6e97-416f-836a-dced97cf46af
|
97 |
A Heine, SAE Held, J Schulte-Schrepping, JFA Wolff, K Klee, T Ulas, NA Schmacke, SN Daecke, K Riethausen, JL Schultze, P Brossart. Generation and functional characterization of MDSC-like cells. OncoImmunology 2017; 6(4): e1295203
https://doi.org/10.1080/2162402X.2017.1295203
pmid: 28507805
|
98 |
Z Julier, AJ Park, PS Briquez, MM Martino. Promoting tissue regeneration by modulating the immune system. Acta Biomater 2017; 53: 13–28
https://doi.org/10.1016/j.actbio.2017.01.056
pmid: 28119112
|
99 |
T Condamine, DI Gabrilovich. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 2011; 32(1): 19–25
https://doi.org/10.1016/j.it.2010.10.002
pmid: 21067974
|
100 |
T Condamine, J Mastio, DI Gabrilovich. Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol 2015; 98(6): 913–922
https://doi.org/10.1189/jlb.4RI0515-204R
pmid: 26337512
|
101 |
DI Gabrilovich, S Nagaraj. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162–174
https://doi.org/10.1038/nri2506
pmid: 19197294
|
102 |
MG Lechner, DJ Liebertz, AL Epstein. Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 2010; 185(4): 2273–2284
https://doi.org/10.4049/jimmunol.1000901
pmid: 20644162
|
103 |
RV Jimenez, V Kuznetsova, AN Connelly, Z Hel, AJ Szalai. C-reactive protein promotes the expansion of myeloid derived cells with suppressor functions. Front Immunol 2019; 10: 2183
https://doi.org/10.3389/fimmu.2019.02183
pmid: 31620123
|
104 |
JI Youn, DI Gabrilovich. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 2010; 40(11): 2969–2975
https://doi.org/10.1002/eji.201040895
pmid: 21061430
|
105 |
C Abad, H Nobuta, J Li, A Kasai, WH Yong, JA Waschek. Targeted STAT3 disruption in myeloid cells alters immunosuppressor cell abundance in a murine model of spontaneous medulloblastoma. J Leukoc Biol 2014; 95(2): 357–367
https://doi.org/10.1189/jlb.1012531
pmid: 24068730
|
106 |
SP Tu, H Jin, JD Shi, LM Zhu, Y Suo, G Lu, A Liu, TC Wang, CS Yang. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila) 2012; 5(2): 205–215
https://doi.org/10.1158/1940-6207.CAPR-11-0247
pmid: 22030090
|
107 |
I Marigo, E Bosio, S Solito, C Mesa, A Fernandez, L Dolcetti, S Ugel, N Sonda, S Bicciato, E Falisi, F Calabrese, G Basso, P Zanovello, E Cozzi, S Mandruzzato, V Bronte. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 2010; 32(6): 790–802
https://doi.org/10.1016/j.immuni.2010.05.010
pmid: 20605485
|
108 |
K Abbasi, M Fadaei Araghi, M Zafarghandi, A Karimi, H Ahmadi, M Marzban, N Movahedi, SH Abbasi, N Moshtaghi. Concomitant carotid endarterectomy and coronary artery bypass grafting versus staged carotid stenting followed by coronary artery bypass grafting. J Cardiovasc Surg (Torino) 2008; 49(2): 285–288
pmid: 18431351
|
109 |
JI Youn, V Kumar, M Collazo, Y Nefedova, T Condamine, P Cheng, A Villagra, S Antonia, JC McCaffrey, M Fishman, A Sarnaik, P Horna, E Sotomayor, DI Gabrilovich. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol 2013; 14(3): 211–220
https://doi.org/10.1038/ni.2526
pmid: 23354483
|
110 |
AJ Casbon, D Reynaud, C Park, E Khuc, DD Gan, K Schepers, E Passegué, Z Werb. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci USA 2015; 112(6): E566–E575
https://doi.org/10.1073/pnas.1424927112
pmid: 25624500
|
111 |
S Ryzhov, SV Novitskiy, AE Goldstein, A Biktasova, MR Blackburn, I Biaggioni, MM Dikov, I Feoktistov. Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells. J Immunol 2011; 187(11): 6120–6129
https://doi.org/10.4049/jimmunol.1101225
pmid: 22039302
|
112 |
V Damuzzo, L Pinton, G Desantis, S Solito, I Marigo, V Bronte, S Mandruzzato. Complexity and challenges in defining myeloid-derived suppressor cells. Cytometry B Clin Cytom 2015; 88(2): 77–91
https://doi.org/10.1002/cytob.21206
pmid: 25504825
|
113 |
ZG Fridlender, J Sun, S Kim, V Kapoor, G Cheng, L Ling, GS Worthen, SM Albelda. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 2009; 16(3): 183–194
https://doi.org/10.1016/j.ccr.2009.06.017
pmid: 19732719
|
114 |
C Cimen Bozkus, BD Elzey, SA Crist, LG Ellies, TL Ratliff. Expression of cationic amino acid transporter 2 is required for myeloid-derived suppressor cell-mediated control of T cell immunity. J Immunol 2015; 195(11): 5237–5250
https://doi.org/10.4049/jimmunol.1500959
pmid: 26491198
|
115 |
CS Netherby, MN Messmer, L Burkard-Mandel, S Colligan, A Miller, E Cortes Gomez, J Wang, MJ Nemeth, SI Abrams. The granulocyte progenitor stage is a key target of IRF8-mediated regulation of myeloid-derived suppressor cell production. J Immunol 2017; 198(10): 4129–4139
https://doi.org/10.4049/jimmunol.1601722
pmid: 28356386
|
116 |
J Dai, A Kumbhare, DA Williams, D Youssef, ZQ Yao, CE McCall, M El Gazzar. Nfia deletion in myeloid cells blocks expansion of myeloid-derived suppressor cells during sepsis. Innate Immun 2018; 24(1): 54–65
https://doi.org/10.1177/1753425917742956
pmid: 29172874
|
117 |
X Tian, J Tian, X Tang, K Rui, Y Zhang, J Ma, Y Wang, H Xu, L Lu, S Wang. Particulate b-glucan regulates the immunosuppression of granulocytic myeloid-derived suppressor cells by inhibiting NFIA expression. OncoImmunology 2015; 4(9): e1038687
https://doi.org/10.1080/2162402X.2015.1038687
pmid: 26405609
|
118 |
G Zardo, A Ciolfi, L Vian, LM Starnes, M Billi, S Racanicchi, C Maresca, F Fazi, L Travaglini, N Noguera, M Mancini, M Nanni, G Cimino, F Lo-Coco, F Grignani, C Nervi. Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood 2012; 119(17): 4034–4046
https://doi.org/10.1182/blood-2011-08-371344
pmid: 22327224
|
119 |
Y Zheng, X Tian, T Wang, X Xia, F Cao, J Tian, P Xu, J Ma, H Xu, S Wang. Long noncoding RNA Pvt1 regulates the immunosuppression activity of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Mol Cancer 2019; 18(1): 61
https://doi.org/10.1186/s12943-019-0978-2
pmid: 30925926
|
120 |
S Budhwar, P Verma, R Verma, S Rai, K Singh. The Yin and Yang of myeloid derived suppressor cells. Front Immunol 2018; 9: 2776
https://doi.org/10.3389/fimmu.2018.02776
pmid: 30555467
|
121 |
L Giordanengo, N Guiñazú, C Stempin, R Fretes, F Cerbán, S Gea. Cruzipain, a major Trypanosoma cruzi antigen, conditions the host immune response in favor of parasite. Eur J Immunol 2002; 32(4): 1003–1011
https://doi.org/10.1002/1521-4141(200204)32:4<1003::AID-IMMU1003>3.0.CO;2-P
pmid: 11920566
|
122 |
MB Voisin, D Buzoni-Gatel, D Bout, F Velge-Roussel. Both expansion of regulatory GR1+CD11b+ myeloid cells and anergy of T lymphocytes participate in hyporesponsiveness of the lung-associated immune system during acute toxoplasmosis. Infect Immun 2004; 72(9): 5487–5492
https://doi.org/10.1128/IAI.72.9.5487-5492.2004
pmid: 15322051
|
123 |
LI Terrazas, KL Walsh, D Piskorska, E McGuire, DA Harn Jr. The schistosome oligosaccharide lacto-N-neotetraose expands Gr1+ cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4+ cells: a potential mechanism for immune polarization in helminth infections. J Immunol 2001; 167(9): 5294–5303
https://doi.org/10.4049/jimmunol.167.9.5294
pmid: 11673545
|
124 |
L Gómez-García, LM López-Marín, R Saavedra, JL Reyes, M Rodríguez-Sosa, LI Terrazas. Intact glycans from cestode antigens are involved in innate activation of myeloid suppressor cells. Parasite Immunol 2005; 27(10-11): 395–405
https://doi.org/10.1111/j.1365-3024.2005.00790.x
pmid: 16179033
|
125 |
L Brys, A Beschin, G Raes, GH Ghassabeh, W Noël, J Brandt, F Brombacher, P De Baetselier. Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J Immunol 2005; 174(10): 6095–6104
https://doi.org/10.4049/jimmunol.174.10.6095
pmid: 15879104
|
126 |
A Mencacci, C Montagnoli, A Bacci, E Cenci, L Pitzurra, A Spreca, M Kopf, AH Sharpe, L Romani. CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J Immunol 2002; 169(6): 3180–3190
https://doi.org/10.4049/jimmunol.169.6.3180
pmid: 12218136
|
127 |
AV Ezernitchi, I Vaknin, L Cohen-Daniel, O Levy, E Manaster, A Halabi, E Pikarsky, L Shapira, M Baniyash. TCRζ down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol 2006; 177(7): 4763–4772
https://doi.org/10.4049/jimmunol.177.7.4763
pmid: 16982917
|
128 |
C De Santo, M Salio, SH Masri, LY Lee, T Dong, AO Speak, S Porubsky, S Booth, N Veerapen, GS Besra, HJ Gröne, FM Platt, M Zambon, V Cerundolo. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 2008; 118(12): 4036–4048
https://doi.org/10.1172/JCI36264
pmid: 19033672
|
129 |
L Wang, J Zhao, JP Ren, XY Wu, ZD Morrison, MA Elgazzar, SB Ning, JP Moorman, ZQ Yao. Expansion of myeloid-derived suppressor cells promotes differentiation of regulatory T cells in HIV-1+ individuals. AIDS 2016; 30(10): 1521–1531
https://doi.org/10.1097/QAD.0000000000001083
pmid: 26959508
|
130 |
KR Crook, P Liu. Role of myeloid-derived suppressor cells in autoimmune disease. World J Immunol 2014; 4(1): 26–33
https://doi.org/10.5411/wji.v4.i1.26
pmid: 25621222
|
131 |
P Boros, J Ochando, M Zeher. Myeloid derived suppressor cells and autoimmunity. Hum Immunol 2016; 77(8): 631–636
https://doi.org/10.1016/j.humimm.2016.05.024
pmid: 27240453
|
132 |
J Qin, Y Arakawa, M Morita, JJ Fung, S Qian, L Lu. C-C chemokine receptor type 2-dependent migration of myeloid-derived suppressor cells in protection of islet transplants. Transplantation 2017; 101(8): 1793–1800
https://doi.org/10.1097/TP.0000000000001529
pmid: 27755503
|
133 |
P Li, Y Zheng, X Chen. Drugs for autoimmune inflammatory diseases: from small molecule compounds to anti-TNF biologics. Front Pharmacol 2017; 8: 460
https://doi.org/10.3389/fphar.2017.00460
pmid: 28785220
|
134 |
O Bereshchenko, G Migliorati, S Bruscoli, C Riccardi. Glucocorticoid-induced leucine zipper: a novel anti-inflammatory molecule. Front Pharmacol 2019; 10: 308
https://doi.org/10.3389/fphar.2019.00308
pmid: 30971930
|
135 |
KR Patil, UB Mahajan, BS Unger, SN Goyal, S Belemkar, SJ Surana, S Ojha, CR Patil. Animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci 2019; 20(18): E4367
https://doi.org/10.3390/ijms20184367
pmid: 31491986
|
136 |
G van Niekerk, T Mabin, AM Engelbrecht. Anti-inflammatory mechanisms of cannabinoids: an immunometabolic perspective. Inflammopharmacology 2019; 27(1): 39–46
https://doi.org/10.1007/s10787-018-00560-7
pmid: 30610735
|
137 |
E Toubi, Z Vadasz. Innate immune-responses and their role in driving autoimmunity. Autoimmun Rev 2019; 18(3): 306–311
https://doi.org/10.1016/j.autrev.2018.10.005
pmid: 30639645
|
138 |
IH Yoo, MJ Kim, J Kim, JJ Sung, ST Park, SW Ahn. The anti-inflammatory effect of sulforaphane in mice with experimental autoimmune encephalomyelitis. J Korean Med Sci 2019; 34(28): e197
https://doi.org/10.3346/jkms.2019.34.e197
pmid: 31327180
|
139 |
Z Chen, A Bozec, A Ramming, G Schett. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol 2019; 15(1): 9–17
https://doi.org/10.1038/s41584-018-0109-2
pmid: 30341437
|
140 |
P Kumar, S Saini, S Khan, S Surendra Lele, BS Prabhakar. Restoring self-tolerance in autoimmune diseases by enhancing regulatory T-cells. Cell Immunol 2019; 339: 41–49
https://doi.org/10.1016/j.cellimm.2018.09.008
pmid: 30482489
|
141 |
CF Lee, YC Lo, CH Cheng, GJ Furtmüller, B Oh, V Andrade-Oliveira, AG Thomas, CE Bowman, BS Slusher, MJ Wolfgang, G Brandacher, JD Powell. Preventing allograft rejection by targeting immune metabolism. Cell Reports 2015; 13(4): 760–770
https://doi.org/10.1016/j.celrep.2015.09.036
pmid: 26489460
|
142 |
DN Mori, D Kreisel, JN Fullerton, DW Gilroy, DR Goldstein. Inflammatory triggers of acute rejection of organ allografts. Immunol Rev 2014; 258(1): 132–144
https://doi.org/10.1111/imr.12146
pmid: 24517430
|
143 |
YS Lee, T Zhang, JS Bromberg, JR Scalea. Myeloid derived suppressor cells (MDSC) home to the allograft and can control t cell responses. Meeting abstract. 2019 American Transplant Congress. 2019. (accessed December 28, 2019)
|
144 |
W Zhang, J Li, G Qi, G Tu, C Yang, M Xu. Myeloid-derived suppressor cells in transplantation: the dawn of cell therapy. J Transl Med 2018; 16(1): 19
https://doi.org/10.1186/s12967-018-1395-9
pmid: 29378596
|
145 |
J Ochando, P Conde, A Utrero-Rico, E Paz-Artal. Tolerogenic role of myeloid suppressor cells in organ transplantation. Front Immunol 2019; 10: 374
https://doi.org/10.3389/fimmu.2019.00374
pmid: 30894860
|
146 |
BD Hock, JL McKenzie, NB Cross, MJ Currie. Dynamic changes in myeloid derived suppressor cell subsets following renal transplant: a prospective study. Transpl Immunol 2015; 32(3): 164–171
https://doi.org/10.1016/j.trim.2015.05.001
pmid: 25968653
|
147 |
HJ Lee, SY Park, HJ Jeong, HJ Kim, MK Kim, JY Oh. Glucocorticoids induce corneal allograft tolerance through expansion of monocytic myeloid-derived suppressor cells. Am J Transplant 2018; 18(12): 3029–3037
https://doi.org/10.1111/ajt.15026
pmid: 30019411
|
148 |
T Nakao, T Nakamura, K Masuda, T Matsuyama, H Ushigome, E Ashihara, N Yoshimura. Dexamethasone prolongs cardiac allograft survival in a murine model through myeloid-derived suppressor cells. Transplant Proc 2018; 50(1): 299–304
https://doi.org/10.1016/j.transproceed.2017.11.014
pmid: 29407325
|
149 |
BH Koehn, P Apostolova, JM Haverkamp, JS Miller, V McCullar, J Tolar, DH Munn, WJ Murphy, WJ Brickey, JS Serody, DI Gabrilovich, V Bronte, PJ Murray, JP Ting, R Zeiser, BR Blazar. GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood 2015; 126(13): 1621–1628
https://doi.org/10.1182/blood-2015-03-634691
pmid: 26265697
|
150 |
N Köstlin, H Kugel, B Spring, A Leiber, A Marmé, M Henes, N Rieber, D Hartl, CF Poets, C Gille. Granulocytic myeloid derived suppressor cells expand in human pregnancy and modulate T-cell responses. Eur J Immunol 2014; 44(9): 2582–2591
https://doi.org/10.1002/eji.201344200
pmid: 24894988
|
151 |
RR Nair, P Sinha, A Khanna, K Singh. Reduced myeloid-derived suppressor cells in the blood and endometrium is associated with early miscarriage. Am J Reprod Immunol 2015; 73(6): 479–486
https://doi.org/10.1111/aji.12351
pmid: 25496212
|
152 |
M Zhu, X Huang, S Yi, H Sun, J Zhou. High granulocytic myeloid-derived suppressor cell levels in the peripheral blood predict a better IVF treatment outcome. J Matern Fetal Neonatal Med 2019; 32(7): 1092–1097
https://doi.org/10.1080/14767058.2017.1400002
pmid: 29092663
|
153 |
T Zhang, J Zhou, GCW Man, KT Leung, B Liang, B Xiao, X Ma, S Huang, H Huang, VL Hegde, Y Zhong, Y Li, GWS Kong, AKW Yiu, J Kwong, PC Ng, BA Lessey, PS Nagarkatti, M Nagarkatti, CC Wang. MDSCs drive the process of endometriosis by enhancing angiogenesis and are a new potential therapeutic target. Eur J Immunol 2018; 48(6): 1059–1073
https://doi.org/10.1002/eji.201747417
pmid: 29460338
|
154 |
S Casacuberta-Serra, C Costa, H Eixarch, MJ Mansilla, S López-Estévez, L Martorell, M Parés, X Montalban, C Espejo, J Barquinero. Myeloid-derived suppressor cells expressing a self-antigen ameliorate experimental autoimmune encephalomyelitis. Exp Neurol 2016; 286: 50–60
https://doi.org/10.1016/j.expneurol.2016.09.012
pmid: 27693617
|
155 |
V Moliné-Velázquez, V Vila-Del Sol, F de Castro, D Clemente. Myeloid cell distribution and activity in multiple sclerosis. Histol Histopathol 2016; 31(4): 357–370
pmid: 26592711
|
156 |
C Cantoni, F Cignarella, L Ghezzi, B Mikesell, B Bollman, MM Berrien-Elliott, AR Ireland, TA Fehniger, GF Wu, L Piccio. Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol 2017; 133(1): 61–77
https://doi.org/10.1007/s00401-016-1621-6
pmid: 27704281
|
157 |
DM Elliott, N Singh, M Nagarkatti, PS Nagarkatti. Cannabidiol attenuates experimental autoimmune encephalomyelitis model of multiple sclerosis through induction of myeloid-derived suppressor cells. Front Immunol 2018; 9: 1782
https://doi.org/10.3389/fimmu.2018.01782
pmid: 30123217
|
158 |
M Ioannou, T Alissafi, I Lazaridis, G Deraos, J Matsoukas, A Gravanis, V Mastorodemos, A Plaitakis, A Sharpe, D Boumpas, P Verginis. Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J Immunol 2012; 188(3): 1136–1146
https://doi.org/10.4049/jimmunol.1101816
pmid: 22210912
|
159 |
H Yi, C Guo, X Yu, D Zuo, XY Wang. Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis. J Immunol 2012; 189(9): 4295–4304
https://doi.org/10.4049/jimmunol.1200086
pmid: 23034169
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|