|
|
|
Interactions between remote ischemic conditioning and post-stroke sleep regulation |
Xian Wang1, Xunming Ji1,2( ) |
1. Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China 2. Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100069, China |
|
|
|
|
Abstract Sleep disturbances are common in patients with stroke, and sleep quality has a critical role in the onset and outcome of stroke. Poor sleep exacerbates neurological injury, impedes nerve regeneration, and elicits serious complications. Thus, exploring a therapy suitable for patients with stroke and sleep disturbances is imperative. As a multi-targeted nonpharmacological intervention, remote ischemic conditioning can reduce the ischemic size of the brain, improve the functional outcome of stroke, and increase sleep duration. Preclinical/clinical evidence showed that this method can inhibit the inflammatory response, mediate the signal transductions of adenosine, activate the efferents of the vagal nerve, and reset the circadian clocks, all of which are involved in sleep regulation. In particular, cytokines tumor necrosis factor α (TNFα) and adenosine are sleep factors, and electrical vagal nerve stimulation can improve insomnia. On the basis of the common mechanisms of remote ischemic conditioning and sleep regulation, a causal relationship was proposed between remote ischemic conditioning and post-stroke sleep quality.
|
| Keywords
remote ischemic conditioning
sleep regulation
stroke
|
|
Corresponding Author(s):
Xunming Ji
|
|
Just Accepted Date: 29 October 2021
Online First Date: 19 November 2021
Issue Date: 27 December 2021
|
|
| 1 |
W Wang, B Jiang, H Sun, X Ru, D Sun, L Wang, L Wang, Y Jiang, Y Li, Y Wang, Z Chen, S Wu, Y Zhang, D Wang, Y Wang, VL; NESS-China Investigators Feigin. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults. Circulation 2017; 135(8): 759–771
https://doi.org/10.1161/CIRCULATIONAHA.116.025250
pmid: 28052979
|
| 2 |
U Dirnagl, M Endres. Found in translation: preclinical stroke research predicts human pathophysiology, clinical phenotypes, and therapeutic outcomes. Stroke 2014; 45(5): 1510–1518
https://doi.org/10.1161/STROKEAHA.113.004075
pmid: 24652307
|
| 3 |
S Baylan, S Griffiths, N Grant, NM Broomfield, JJ Evans, M Gardani. Incidence and prevalence of post-stroke insomnia: a systematic review and meta-analysis. Sleep Med Rev 2020; 49: 101222
https://doi.org/10.1016/j.smrv.2019.101222
pmid: 31739180
|
| 4 |
CM Morin, JD Edinger, S Beaulieu-Bonneau, H Ivers, AD Krystal, B Guay, L Bélanger, A Cartwright, B Simmons, M Lamy, M Busby. Effectiveness of sequential psychological and medication therapies for insomnia disorder: a randomized clinical trial. JAMA Psychiatry 2020; 77(11): 1107–1115
https://doi.org/10.1001/jamapsychiatry.2020.1767
pmid: 32639561
|
| 5 |
CM Morin, A Vallières, B Guay, H Ivers, J Savard, C Mérette, C Bastien, L Baillargeon. Cognitive behavioral therapy, singly and combined with medication, for persistent insomnia: a randomized controlled trial. JAMA 2009; 301(19): 2005–2015
https://doi.org/10.1001/jama.2009.682
pmid: 19454639
|
| 6 |
B Ibáñez, G Heusch, M Ovize, F Van de Werf. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 2015; 65(14): 1454–1471
https://doi.org/10.1016/j.jacc.2015.02.032
pmid: 25857912
|
| 7 |
P Kleinbongard, A Skyschally, G Heusch. Cardioprotection by remote ischemic conditioning and its signal transduction. Pflugers Arch 2017; 469(2): 159–181
https://doi.org/10.1007/s00424-016-1922-6
pmid: 27928644
|
| 8 |
M Pace, MR Camilo, A Seiler, SB Duss, J Mathis, M Manconi, CL Bassetti. Rapid eye movements sleep as a predictor of functional outcome after stroke: a translational study. Sleep (Basel) 2018; 41(10): zsy138
https://doi.org/10.1093/sleep/zsy138
pmid: 30032306
|
| 9 |
A Terzoudi, T Vorvolakos, I Heliopoulos, M Livaditis, K Vadikolias, H Piperidou. Sleep architecture in stroke and relation to outcome. Eur Neurol 2009; 61(1): 16–22
https://doi.org/10.1159/000165344
pmid: 18948695
|
| 10 |
CL Bassetti, MS Aldrich. Sleep electroencephalogram changes in acute hemispheric stroke. Sleep Med 2001; 2(3): 185–194
https://doi.org/10.1016/S1389-9457(00)00071-X
pmid: 11311681
|
| 11 |
KN Mims, D Kirsch. Sleep and stroke. Sleep Med Clin 2016; 11(1): 39–51
https://doi.org/10.1016/j.jsmc.2015.10.009
pmid: 26972032
|
| 12 |
CS McAlpine, MG Kiss, S Rattik, S He, A Vassalli, C Valet, A Anzai, CT Chan, JE Mindur, F Kahles, WC Poller, V Frodermann, AM Fenn, AF Gregory, L Halle, Y Iwamoto, FF Hoyer, CJ Binder, P Libby, M Tafti, TE Scammell, M Nahrendorf, FK Swirski. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 2019; 566(7744): 383–387
https://doi.org/10.1038/s41586-019-0948-2
pmid: 30760925
|
| 13 |
B Gao, E Cam, H Jaeger, C Zunzunegui, J Sarnthein, CL Bassetti. Sleep disruption aggravates focal cerebral ischemia in the rat. Sleep 2010; 33(7): 879–887
https://doi.org/10.1093/sleep/33.7.879
pmid: 20614848
|
| 14 |
C Zunzunegui, B Gao, E Cam, A Hodor, CL Bassetti. Sleep disturbance impairs stroke recovery in the rat. Sleep (Basel) 2011; 34(9): 1261–1269
https://doi.org/10.5665/SLEEP.1252
pmid: 21886364
|
| 15 |
DM Hermann, CL Bassetti. Sleep-related breathing and sleep–wake disturbances in ischemic stroke. Neurology 2009; 73(16): 1313–1322
https://doi.org/10.1212/WNL.0b013e3181bd137c
pmid: 19841384
|
| 16 |
S Nguyen, D Wong, A McKay, SMW Rajaratnam, G Spitz, G Williams, D Mansfield, JL Ponsford. Cognitive behavioural therapy for post-stroke fatigue and sleep disturbance: a pilot randomised controlled trial with blind assessment. Neuropsychol Rehabil 2019; 29(5): 723–738
https://doi.org/10.1080/09602011.2017.1326945
pmid: 28521579
|
| 17 |
A Hodor, S Palchykova, F Baracchi, D Noain, CL Bassetti. Baclofen facilitates sleep, neuroplasticity, and recovery after stroke in rats. Ann Clin Transl Neurol 2014; 1(10): 765–777
https://doi.org/10.1002/acn3.115
pmid: 25493268
|
| 18 |
U Dirnagl, K Becker, A Meisel. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 2009; 8(4): 398–412
https://doi.org/10.1016/S1474-4422(09)70054-7
pmid: 19296922
|
| 19 |
V Calabrese, C Cornelius, AT Dinkova-Kostova, EJ Calabrese, MP Mattson. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 2010; 13(11): 1763–1811
https://doi.org/10.1089/ars.2009.3074
pmid: 20446769
|
| 20 |
AR Stebbing. Hormesis—the stimulation of growth by low levels of inhibitors. Sci Total Environ 1982; 22(3): 213–234
https://doi.org/10.1016/0048-9697(82)90066-3
pmid: 7043732
|
| 21 |
G Heusch. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 2020; 17(12): 773–789
https://doi.org/10.1038/s41569-020-0403-y
pmid: 32620851
|
| 22 |
V Calabrese, M Renis, A Calderone, A Russo, ML Barcellona, V Rizza. Stress proteins and SH-groups in oxidant-induced cell damage after acute ethanol administration in rat. Free Radic Biol Med 1996; 20(3): 391–397
https://doi.org/10.1016/0891-5849(95)02095-0
pmid: 8720910
|
| 23 |
R Siracusa, M Scuto, R Fusco, A Trovato, ML Ontario, R Crea, R Di Paola, S Cuzzocrea, V Calabrese. Anti-inflammatory and anti-oxidant activity of Hidrox® in rotenone-induced Parkinson’s disease in mice. Antioxidants 2020; 9(9): 824
https://doi.org/10.3390/antiox9090824
pmid: 32899274
|
| 24 |
U Dirnagl, A Meisel. Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning? Neuropharmacology 2008; 55(3): 334–344
https://doi.org/10.1016/j.neuropharm.2008.02.017
pmid: 18402985
|
| 25 |
DJ Hausenloy, JA Barrabes, HE Bøtker, SM Davidson, F Di Lisa, J Downey, T Engstrom, P Ferdinandy, HA Carbrera-Fuentes, G Heusch, B Ibanez, EK Iliodromitis, J Inserte, R Jennings, N Kalia, R Kharbanda, S Lecour, M Marber, T Miura, M Ovize, MA Perez-Pinzon, HM Piper, K Przyklenk, MR Schmidt, A Redington, M Ruiz-Meana, G Vilahur, J Vinten-Johansen, DM Yellon, D Garcia-Dorado. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res Cardiol 2016; 111(6): 70
https://doi.org/10.1007/s00395-016-0588-8
pmid: 27766474
|
| 26 |
X Cheng, H Zhao, F Yan, Z Tao, R Wang, Z Han, G Li, Y Luo, X Ji. Limb remote ischemic post-conditioning mitigates brain recovery in a mouse model of ischemic stroke by regulating reactive astrocytic plasticity. Brain Res 2018; 1686: 94–100
https://doi.org/10.1016/j.brainres.2018.02.019
pmid: 29462606
|
| 27 |
C Ren, N Li, S Li, R Han, Q Huang, J Hu, K Jin, X Ji. Limb ischemic conditioning improved cognitive deficits via eNOS-dependent augmentation of angiogenesis after chronic cerebral hypoperfusion in rats. Aging Dis 2018; 9(5): 869–879
https://doi.org/10.14336/AD.2017.1106
pmid: 30271664
|
| 28 |
W Zhao, R Meng, C Ma, B Hou, L Jiao, F Zhu, W Wu, J Shi, Y Duan, R Zhang, J Zhang, Y Sun, H Zhang, F Ling, Y Wang, W Feng, Y Ding, B Ovbiagele, X Ji. Safety and efficacy of remote ischemic preconditioning in patients with severe carotid artery stenosis before carotid artery stenting: a proof-of-concept, randomized controlled trial. Circulation 2017; 135(14): 1325–1335
https://doi.org/10.1161/CIRCULATIONAHA.116.024807
pmid: 28174194
|
| 29 |
R Meng, K Asmaro, L Meng, Y Liu, C Ma, C Xi, G Li, C Ren, Y Luo, F Ling, J Jia, Y Hua, X Wang, Y Ding, EH Lo, X Ji. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology 2012; 79(18): 1853–1861
https://doi.org/10.1212/WNL.0b013e318271f76a
pmid: 23035060
|
| 30 |
W Zhao, F Jiang, Z Zhang, J Zhang, Y Ding, X Ji. Remote ischemic conditioning: a novel non-invasive approach to prevent post-stroke depression. Front Aging Neurosci 2017; 9: 270
https://doi.org/10.3389/fnagi.2017.00270
pmid: 28848427
|
| 31 |
ZJ Liu, C Chen, XR Li, YY Ran, T Xu, Y Zhang, XK Geng, Y Zhang, HS Du, RK Leak, XM Ji, XM Hu. Remote ischemic preconditioning-mediated neuroprotection against stroke is associated with significant alterations in peripheral immune responses. CNS Neurosci Ther 2016; 22(1): 43–52
https://doi.org/10.1111/cns.12448
pmid: 26384716
|
| 32 |
AJ Brager, T Yang, JC Ehlen, RP Simon, R Meller, KN Paul. Sleep is critical for remote preconditioning-induced neuroprotection. Sleep (Basel) 2016; 39(11): 2033–2040
https://doi.org/10.5665/sleep.6238
pmid: 27568798
|
| 33 |
MR Macleod, T O’Collins, LL Horky, DW Howells, GA Donnan. Systematic review and meta-analysis of the efficacy of melatonin in experimental stroke. J Pineal Res 2005; 38(1): 35–41
https://doi.org/10.1111/j.1600-079X.2004.00172.x
pmid: 15617535
|
| 34 |
YS Chang, MH Lin, JH Lee, PL Lee, YS Dai, KH Chu, C Sun, YT Lin, LC Wang, HH Yu, YH Yang, CA Chen, KS Wan, BL Chiang. Melatonin supplementation for children with atopic dermatitis and sleep disturbance: a randomized clinical trial. JAMA Pediatr 2016; 170(1): 35–42
https://doi.org/10.1001/jamapediatrics.2015.3092
pmid: 26569624
|
| 35 |
RJ Reiter, RM Sainz, S Lopez-Burillo, JC Mayo, LC Manchester, DX Tan. Melatonin ameliorates neurologic damage and neurophysiologic deficits in experimental models of stroke. Ann N Y Acad Sci 2003; 993(1): 35–53
https://doi.org/10.1111/j.1749-6632.2003.tb07509.x
pmid: 12853293
|
| 36 |
D Feng, B Wang, L Wang, N Abraham, K Tao, L Huang, W Shi, Y Dong, Y Qu. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. J Pineal Res 2017; 62(3): e12395
https://doi.org/10.1111/jpi.12395
pmid: 28178380
|
| 37 |
K Gul-Kahraman, M Yilmaz-Bozoglan, E Sahna. Physiological and pharmacological effects of melatonin on remote ischemic perconditioning after myocardial ischemia-reperfusion injury in rats: role of Cybb, Fas, NfκB, Irisin signaling pathway. J Pineal Res 2019; 67(2): e12589 PMID:31155748
https://doi.org/10.1111/jpi.12589
|
| 38 |
DJ Hausenloy, D Garcia-Dorado, H Erik Bøtker, SM Davidson, J Downey, FB Engel, R Jennings, S Lecour, J Leor, R Madonna, M Ovize, C Perrino, F Prunier, R Schulz, JPG Sluijter, LW Van Laake, J Vinten-Johansen, DM Yellon, K Ytrehus, G Heusch, P Ferdinandy. Melatonin as a cardioprotective therapy following ST-segment elevation myocardial infarction: is it really promising? Reply. Cardiovasc Res 2017; 113(11): 1418–1419
https://doi.org/10.1093/cvr/cvx137
pmid: 28859295
|
| 39 |
K Karikó, D Weissman, FA Welsh. Inhibition of Toll-like receptor and cytokine signaling—a unifying theme in ischemic tolerance. J Cereb Blood Flow Metab 2004; 24(11): 1288–1304
https://doi.org/10.1097/01.WCB.0000145666.68576.71
pmid: 15545925
|
| 40 |
M Pace, F Baracchi, B Gao, C Bassetti. Identification of sleep-modulated pathways involved in neuroprotection from stroke. Sleep (Basel) 2015; 38(11): 1707–1718
https://doi.org/10.5665/sleep.5148
pmid: 26085290
|
| 41 |
IE Konstantinov, S Arab, RK Kharbanda, J Li, MM Cheung, V Cherepanov, GP Downey, PP Liu, E Cukerman, JG Coles, AN Redington. The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol Genomics 2004; 19(1): 143–150
https://doi.org/10.1152/physiolgenomics.00046.2004
pmid: 15304621
|
| 42 |
JC Hsu, YS Lee, CN Chang, EA Ling, CT Lan. Sleep deprivation prior to transient global cerebral ischemia attenuates glial reaction in the rat hippocampal formation. Brain Res 2003; 984(1–2): 170–181
https://doi.org/10.1016/S0006-8993(03)03128-7
pmid: 12932851
|
| 43 |
M Moldovan, AO Constantinescu, A Balseanu, N Oprescu, L Zagrean, A Popa-Wagner. Sleep deprivation attenuates experimental stroke severity in rats. Exp Neurol 2010; 222(1): 135–143
https://doi.org/10.1016/j.expneurol.2009.12.023
pmid: 20045410
|
| 44 |
E Cam, B Gao, L Imbach, A Hodor, CL Bassetti. Sleep deprivation before stroke is neuroprotective: a pre-ischemic conditioning related to sleep rebound. Exp Neurol 2013; 247: 673–679
https://doi.org/10.1016/j.expneurol.2013.03.003
pmid: 23499829
|
| 45 |
CM Morin, CL Drake, AG Harvey, AD Krystal, R Manber, D Riemann, K Spiegelhalder. Insomnia disorder. Nat Rev Dis Primers 2015; 1(1): 15026
https://doi.org/10.1038/nrdp.2015.26
pmid: 27189779
|
| 46 |
T Porkka-Heiskanen, AV Kalinchuk. Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 2011; 15(2): 123–135
https://doi.org/10.1016/j.smrv.2010.06.005
pmid: 20970361
|
| 47 |
CS McAlpine, FK Swirski. Circadian influence on metabolism and inflammation in atherosclerosis. Circ Res 2016; 119(1): 131–141
https://doi.org/10.1161/CIRCRESAHA.116.308034
pmid: 27340272
|
| 48 |
L Imeri, MR Opp. How (and why) the immune system makes us sleep. Nat Rev Neurosci 2009; 10(3): 199–210
https://doi.org/10.1038/nrn2576
pmid: 19209176
|
| 49 |
JI Granger, PL Ratti, SC Datta, RM Raymond, MR Opp. Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain. Psychoneuroendocrinology 2013; 38(7): 1047–1057
https://doi.org/10.1016/j.psyneuen.2012.10.010
pmid: 23146654
|
| 50 |
J Castillo, MA Moro, M Blanco, R Leira, J Serena, I Lizasoain, A Dávalos. The release of tumor necrosis factor-α is associated with ischemic tolerance in human stroke. Ann Neurol 2003; 54(6): 811–819
https://doi.org/10.1002/ana.10765
pmid: 14681891
|
| 51 |
N Gedik, E Kottenberg, M Thielmann, UH Frey, H Jakob, J Peters, G Heusch, P Kleinbongard. Potential humoral mediators of remote ischemic preconditioning in patients undergoing surgical coronary revascularization. Sci Rep 2017; 7(1): 12660
https://doi.org/10.1038/s41598-017-12833-2
pmid: 28978919
|
| 52 |
XL Meng, DL Zhang, SH Sui. Acute remote ischemic preconditioning alleviates free radical injury and inflammatory response in cerebral ischemia/reperfusion rats. Exp Ther Med 2019; 18(3): 1953–1960
https://doi.org/10.3892/etm.2019.7797
pmid: 31410157
|
| 53 |
H Offner, S Subramanian, SM Parker, ME Afentoulis, AA Vandenbark, PD Hurn. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 2006; 26(5): 654–665
https://doi.org/10.1038/sj.jcbfm.9600217
pmid: 16121126
|
| 54 |
KZ Chapman, VQ Dale, A Dénes, G Bennett, NJ Rothwell, SM Allan, BW McColl. A rapid and transient peripheral inflammatory response precedes brain inflammation after experimental stroke. J Cereb Blood Flow Metab 2009; 29(11): 1764–1768
https://doi.org/10.1038/jcbfm.2009.113
pmid: 19654587
|
| 55 |
ZP Cai, N Parajuli, X Zheng, L Becker. Remote ischemic preconditioning confers late protection against myocardial ischemia-reperfusion injury in mice by upregulating interleukin-10. Basic Res Cardiol 2012; 107(4): 277
https://doi.org/10.1007/s00395-012-0277-1
pmid: 22752341
|
| 56 |
G Heusch. Adenosine and maximum coronary vasodilation in humans: myth and misconceptions in the assessment of coronary reserve. Basic Res Cardiol 2010; 105(1): 1–5
https://doi.org/10.1007/s00395-009-0074-7
pmid: 19941145
|
| 57 |
ZL Huang, Y Urade, O Hayaishi. The role of adenosine in the regulation of sleep. Curr Top Med Chem 2011; 11(8): 1047–1057
https://doi.org/10.2174/156802611795347654
pmid: 21401496
|
| 58 |
GJ Grover, PG Sleph, S Dzwonczyk. Role of myocardial ATP-sensitive potassium channels in mediating preconditioning in the dog heart and their possible interaction with adenosine A1-receptors. Circulation 1992; 86(4): 1310–1316
https://doi.org/10.1161/01.CIR.86.4.1310
pmid: 1394937
|
| 59 |
MA Leesar, MF Stoddard, YT Xuan, XL Tang, R Bolli. Nonelectrocardiographic evidence that both ischemic preconditioning and adenosine preconditioning exist in humans. J Am Coll Cardiol 2003; 42(3): 437–445
https://doi.org/10.1016/S0735-1097(03)00658-2
pmid: 12906969
|
| 60 |
R Schulz, J Rose, H Post, G Heusch. Involvement of endogenous adenosine in ischaemic preconditioning in swine. Pflugers Arch 1995; 430(2): 273–282
https://doi.org/10.1007/BF00374659
pmid: 7675637
|
| 61 |
M Kitakaze, M Hori, S Takashima, H Sato, M Inoue, T Kamada. Ischemic preconditioning increases adenosine release and 5′-nucleotidase activity during myocardial ischemia and reperfusion in dogs. Implications for myocardial salvage. Circulation 1993; 87(1): 208–215
https://doi.org/10.1161/01.CIR.87.1.208
pmid: 8419009
|
| 62 |
D Elmenhorst, EM Elmenhorst, E Hennecke, T Kroll, A Matusch, D Aeschbach, A Bauer. Recovery sleep after extended wakefulness restores elevated A1 adenosine receptor availability in the human brain. Proc Natl Acad Sci USA 2017; 114(16): 4243–4248
https://doi.org/10.1073/pnas.1614677114
pmid: 28373571
|
| 63 |
TE Bjorness, CL Kelly, T Gao, V Poffenberger, RW Greene. Control and function of the homeostatic sleep response by adenosine A1 receptors. J Neurosci 2009; 29(5): 1267–1276
https://doi.org/10.1523/JNEUROSCI.2942-08.2009
pmid: 19193874
|
| 64 |
S Hu, H Dong, H Zhang, S Wang, L Hou, S Chen, J Zhang, L Xiong. Noninvasive limb remote ischemic preconditioning contributes neuroprotective effects via activation of adenosine A1 receptor and redox status after transient focal cerebral ischemia in rats. Brain Res 2012; 1459: 81–90
https://doi.org/10.1016/j.brainres.2012.04.017
pmid: 22560096
|
| 65 |
GJ Gross, JA Auchampach. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 1992; 70(2): 223–233
https://doi.org/10.1161/01.RES.70.2.223
pmid: 1310443
|
| 66 |
JA Auchampach, GJ Gross. Adenosine A1 receptors, KATP channels, and ischemic preconditioning in dogs. Am J Physiol 1993; 264(5): H1327–H1336
pmid: 8498546
|
| 67 |
HR Lieder, P Kleinbongard, A Skyschally, H Hagelschuer, WM Chilian, G Heusch. Vago-splenic axis in signal transduction of remote ischemic preconditioning in pigs and rats. Circ Res 2018; 123(10): 1152–1163
https://doi.org/10.1161/CIRCRESAHA.118.313859
pmid: 30359199
|
| 68 |
M Irwin, J Thompson, C Miller, JC Gillin, M Ziegler. Effects of sleep and sleep deprivation on catecholamine and interleukin-2 levels in humans: clinical implications. J Clin Endocrinol Metab 1999; 84(6): 1979–1985
https://doi.org/10.1210/jc.84.6.1979
pmid: 10372697
|
| 69 |
AN Vgontzas, J Fernandez-Mendoza, D Liao, EO Bixler. Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder. Sleep Med Rev 2013; 17(4): 241–254
https://doi.org/10.1016/j.smrv.2012.09.005
pmid: 23419741
|
| 70 |
AN Vgontzas, EO Bixler, DA Papanicolaou, A Kales, CA Stratakis, A Vela-Bueno, PW Gold, GP Chrousos. Rapid eye movement sleep correlates with the overall activities of the hypothalamic–pituitary–adrenal axis and sympathetic system in healthy humans. J Clin Endocrinol Metab 1997; 82(10): 3278–3280
https://doi.org/10.1210/jcem.82.10.4307
pmid: 9329353
|
| 71 |
G Seravalle, G Mancia, G Grassi. Sympathetic nervous system, sleep, and hypertension. Curr Hypertens Rep 2018; 20(9): 74
https://doi.org/10.1007/s11906-018-0874-y
pmid: 29980938
|
| 72 |
AM Dorrance, G Fink. Effects of stroke on the autonomic nervous system. Compr Physiol 2015; 5(3): 1241–1263
https://doi.org/10.1002/cphy.c140016
pmid: 26140717
|
| 73 |
P Dutta, G Courties, Y Wei, F Leuschner, R Gorbatov, CS Robbins, Y Iwamoto, B Thompson, AL Carlson, T Heidt, MD Majmudar, F Lasitschka, M Etzrodt, P Waterman, MT Waring, AT Chicoine, AM van der Laan, HW Niessen, JJ Piek, BB Rubin, J Butany, JR Stone, HA Katus, SA Murphy, DA Morrow, MS Sabatine, C Vinegoni, MA Moskowitz, MJ Pittet, P Libby, CP Lin, FK Swirski, R Weissleder, M Nahrendorf. Myocardial infarction accelerates atherosclerosis. Nature 2012; 487(7407): 325–329
https://doi.org/10.1038/nature11260
pmid: 22763456
|
| 74 |
EA Lambert, CJ Thomas, R Hemmes, N Eikelis, A Pathak, MP Schlaich, GW Lambert. Sympathetic nervous response to ischemia-reperfusion injury in humans is altered with remote ischemic preconditioning. Am J Physiol Heart Circ Physiol 2016; 311(2): H364–H370
https://doi.org/10.1152/ajpheart.00369.2016
pmid: 27288436
|
| 75 |
T Miura, S Kawamura, H Tatsuno, Y Ikeda, S Mikami, H Iwamoto, T Okamura, M Iwatate, M Kimura, Y Dairaku, T Maekawa, M Matsuzaki. Ischemic preconditioning attenuates cardiac sympathetic nerve injury via ATP-sensitive potassium channels during myocardial ischemia. Circulation 2001; 104(9): 1053–1058
https://doi.org/10.1161/hc3501.093800
pmid: 11524401
|
| 76 |
H Tsutsui, R Tanaka, M Yamagata, T Yukimura, M Ohkita, Y Matsumura. Protective effect of ischemic preconditioning on ischemia/reperfusion-induced acute kidney injury through sympathetic nervous system in rats. Eur J Pharmacol 2013; 718(1-3): 206–212
https://doi.org/10.1016/j.ejphar.2013.08.032
pmid: 24036256
|
| 77 |
MR Irwin, EM Valladares, S Motivala, JF Thayer, CL Ehlers. Association between nocturnal vagal tone and sleep depth, sleep quality, and fatigue in alcohol dependence. Psychosom Med 2006; 68(1): 159–166
https://doi.org/10.1097/01.psy.0000195743.60952.00
pmid: 16449427
|
| 78 |
B Zhao, L Li, Y Jiao, M Luo, K Xu, Y Hong, JD Cao, Y Zhang, JL Fang, PJ Rong. Transcutaneous auricular vagus nerve stimulation in treating post-stroke insomnia monitored by resting-state fMRI: the first case report. Brain Stimul 2019; 12(3): 824–826
https://doi.org/10.1016/j.brs.2019.02.016
pmid: 30871845
|
| 79 |
B Buchholz, J Kelly, M Muñoz, EA Bernatené, N Méndez Diodati, DH González Maglio, FP Dominici, RJ Gelpi. Vagal stimulation mimics preconditioning and postconditioning of ischemic myocardium in mice by activating different protection mechanisms. Am J Physiol Heart Circ Physiol 2018; 314(6): H1289–H1297
https://doi.org/10.1152/ajpheart.00286.2017
pmid: 29631370
|
| 80 |
G Heusch. Vagal cardioprotection in reperfused acute myocardial infarction. JACC Cardiovasc Interv 2017; 10(15): 1521–1522
https://doi.org/10.1016/j.jcin.2017.05.063
pmid: 28797428
|
| 81 |
MV Basalay, S Mastitskaya, A Mrochek, GL Ackland, AG Del Arroyo, J Sanchez, PO Sjoquist, J Pernow, AV Gourine, A Gourine. Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning. Cardiovasc Res 2016; 112(3): 669–676
https://doi.org/10.1093/cvr/cvw216
pmid: 27702763
|
| 82 |
E Challet. The circadian regulation of food intake. Nat Rev Endocrinol 2019; 15(7): 393–405
https://doi.org/10.1038/s41574-019-0210-x
pmid: 31073218
|
| 83 |
H Reinke, G Asher. Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol 2019; 20(4): 227–241
https://doi.org/10.1038/s41580-018-0096-9
pmid: 30635659
|
| 84 |
JC Ehlen, AJ Brager, J Baggs, L Pinckney, CL Gray, JP DeBruyne, KA Esser, JS Takahashi, KN Paul. Bmal1 function in skeletal muscle regulates sleep. eLife 2017; 6: e26557
https://doi.org/10.7554/eLife.26557
pmid: 28726633
|
| 85 |
M van den Buuse. Circadian rhythms of blood pressure and heart rate in conscious rats: effects of light cycle shift and timed feeding. Physiol Behav 1999; 68(1–2): 9–15
https://doi.org/10.1016/S0031-9384(99)00148-1
pmid: 10627056
|
| 86 |
DJ Durgan, ME Young. The cardiomyocyte circadian clock: emerging roles in health and disease. Circ Res 2010; 106(4): 647–658
https://doi.org/10.1161/CIRCRESAHA.109.209957
pmid: 20203314
|
| 87 |
CM Depner, EL Melanson, AW McHill, KP Wright Jr. Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome. Proc Natl Acad Sci USA 2018; 115(23): E5390–E5399
https://doi.org/10.1073/pnas.1714813115
pmid: 29784788
|
| 88 |
G Wolff, KA Esser. Scheduled exercise phase shifts the circadian clock in skeletal muscle. Med Sci Sports Exerc 2012; 44(9): 1663–1670
https://doi.org/10.1249/MSS.0b013e318255cf4c
pmid: 22460470
|
| 89 |
Z Cai, H Zhong, M Bosch-Marce, K Fox-Talbot, L Wang, C Wei, MA Trush, GL Semenza. Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1α. Cardiovasc Res 2008; 77(3): 463–470
https://doi.org/10.1093/cvr/cvm035
pmid: 18006459
|
| 90 |
GL Semenza. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 2001; 7(8): 345–350
https://doi.org/10.1016/S1471-4914(01)02090-1
pmid: 11516994
|
| 91 |
H Kalakech, S Tamareille, S Pons, D Godin-Ribuot, P Carmeliet, A Furber, V Martin, A Berdeaux, B Ghaleh, F Prunier. Role of hypoxia inducible factor-1α in remote limb ischemic preconditioning. J Mol Cell Cardiol 2013; 65: 98–104
https://doi.org/10.1016/j.yjmcc.2013.10.001
pmid: 24140799
|
| 92 |
G Heusch. HIF-1 and paradoxical phenomena in cardioprotection: expert’s perspective. Cardiovasc Res 2012; 96(2): 214–215
https://doi.org/10.1093/cvr/cvs145
pmid: 22822099
|
| 93 |
CB Peek, DC Levine, J Cedernaes, A Taguchi, Y Kobayashi, SJ Tsai, NA Bonar, MR McNulty, KM Ramsey, J Bass. Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab 2017; 25(1): 86–92 PMID:27773696
https://doi.org/10.1016/j.cmet.2016.09.010
|
| 94 |
Y Wu, D Tang, N Liu, W Xiong, H Huang, Y Li, Z Ma, H Zhao, P Chen, X Qi, EE Zhang. Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals. Cell Metab 2017; 25(1): 73–85
https://doi.org/10.1016/j.cmet.2016.09.009
pmid: 27773697
|
| 95 |
Y Adamovich, B Ladeuix, M Golik, MP Koeners, G Asher. Rhythmic oxygen levels reset circadian clocks through HIF1α. Cell Metab 2017; 25(1): 93–101
https://doi.org/10.1016/j.cmet.2016.09.014
pmid: 27773695
|
| 96 |
MV Basalay, SM Davidson, AV Gourine, DM Yellon. Neural mechanisms in remote ischaemic conditioning in the heart and brain: mechanistic and translational aspects. Basic Res Cardiol 2018; 113(4): 25
https://doi.org/10.1007/s00395-018-0684-z
pmid: 29858664
|
| 97 |
U Schibler, I Gotic, C Saini, P Gos, T Curie, Y Emmenegger, F Sinturel, P Gosselin, A Gerber, F Fleury-Olela, G Rando, M Demarque, P Franken. Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb Symp Quant Biol 2015; 80: 223–232
https://doi.org/10.1101/sqb.2015.80.027490
pmid: 26683231
|
| 98 |
TA Kung, O Egbejimi, J Cui, NP Ha, DJ Durgan, MF Essop, MS Bray, CA Shaw, PE Hardin, WC Stanley, ME Young. Rapid attenuation of circadian clock gene oscillations in the rat heart following ischemia-reperfusion. J Mol Cell Cardiol 2007; 43(6): 744–753
https://doi.org/10.1016/j.yjmcc.2007.08.018
pmid: 17959196
|
| 99 |
MC Beker, B Caglayan, E Yalcin, AB Caglayan, S Turkseven, B Gurel, T Kelestemur, E Sertel, Z Sahin, S Kutlu, U Kilic, AT Baykal, E Kilic. Time-of-day dependent neuronal injury after ischemic stroke: implication of circadian clock transcriptional factor Bmal1 and survival kinase AKT. Mol Neurobiol 2018; 55(3): 2565–2576
https://doi.org/10.1007/s12035-017-0524-4
pmid: 28421530
|
| 100 |
ZJ Liu, C Chen, XR Li, YY Ran, T Xu, Y Zhang, XK Geng, Y Zhang, HS Du, RK Leak, XM Ji, XM Hu. Remote ischemic preconditioning-mediated neuroprotection against stroke is associated with significant alterations in peripheral immune responses. CNS Neurosci Ther 2016; 22(1): 43–52
https://doi.org/10.1111/cns.12448
pmid: 26384716
|
| 101 |
Y Zhang, L Ma, C Ren, K Liu, X Tian, D Wu, Y Ding, J Li, CV Borlongan, X Ji. Immediate remote ischemic postconditioning reduces cerebral damage in ischemic stroke mice by enhancing leptomeningeal collateral circulation. J Cell Physiol 2019; 234(8): 12637–12645
https://doi.org/10.1002/jcp.27858
pmid: 30536714
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|