Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (2) : 227-239    https://doi.org/10.1007/s11684-021-0896-8
RESEARCH ARTICLE
Cannabidiol prevents depressive-like behaviors through the modulation of neural stem cell differentiation
Ming Hou1, Suji Wang1, Dandan Yu1, Xinyi Lu1, Xiansen Zhao1, Zhangpeng Chen1,2,3(), Chao Yan1,2,3,4()
1. State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
2. Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210023, China
3. Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
4. Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing 210023, China
 Download: PDF(4070 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chronic stress impairs radial neural stem cell (rNSC) differentiation and adult hippocampal neurogenesis (AHN), whereas promoting AHN can increase stress resilience against depression. Therefore, investigating the mechanism of neural differentiation and AHN is of great importance for developing antidepressant drugs. The nonpsychoactive phytocannabinoid cannabidiol (CBD) has been shown to be effective against depression. However, whether CBD can modulate rNSC differentiation and hippocampal neurogenesis is unknown. Here, by using the chronic restraint stress (CRS) mouse model, we showed that hippocampal rNSCs mostly differentiated into astrocytes under stress conditions. Moreover, transcriptome analysis revealed that the FoxO signaling pathway was involved in the regulation of this process. The administration of CBD rescued depressive-like symptoms in CRS mice and prevented rNSCs overactivation and differentiation into astrocyte, which was partly mediated by the modulation of the FoxO signaling pathway. These results revealed a previously unknown neural mechanism for neural differentiation and AHN in depression and provided mechanistic insights into the antidepressive effects of CBD.

Keywords cannabidiol      depression      radial neural stem cells      neurogenesis     
Corresponding Author(s): Zhangpeng Chen,Chao Yan   
About author:

Mingsheng Sun and Mingxiao Yang contributed equally to this work.

Just Accepted Date: 16 September 2021   Online First Date: 22 February 2022    Issue Date: 26 April 2022
 Cite this article:   
Ming Hou,Suji Wang,Dandan Yu, et al. Cannabidiol prevents depressive-like behaviors through the modulation of neural stem cell differentiation[J]. Front. Med., 2022, 16(2): 227-239.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0896-8
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I2/227
Fig.1  CRS caused depressive-like behaviors and increased proliferation in the hippocampal DG. (A) Schematic of the experimental design. C57BL/6 mice were subjected to restraint stress for 3 h every day for 3 weeks then to behavioral tests. (B) Percentage of preference for sucrose solution in the SPT (n = 8). (C) Comparison of total water consumption between the control and CRS group in the SPT experiment. (D) Immobility time in the FST (n = 8). (E) Serum corticosterone levels in the control and CRS groups (n = 6). (F) Representative confocal microscopy images showing Ki-67-labeled cells in the DG of mice. White arrowheads mark proliferating cells. Scale bar= 50 µm. (G) Quantification of Ki-67-labeled cells (n = 5). *P<0.05, **P<0.01. n.s., no significant difference.
Fig.2  CRS caused abnormal neurogenesis in the hippocampal DG. (A,C) Representative confocal images of nestin-labeled cells in the DG after CRS (A) and the corresponding quantification results (C, n = 6). Scale bar= 100 µm. (B,D) Representative confocal images showing GCL thickness in the DG after CRS (B) and the corresponding quantification results, which were measured as the distance between the hilus and molecular layer (D, n = 5). Scale bar= 50 µm. (E,G) Representative confocal images showing DCX-labeled cells in the DG after CRS (E) and the corresponding quantification results (G, n = 5). Scale bar= 50 µm. (F,H) Representative confocal images showing GFAP-labeled cells in the DG after CRS (F) and the corresponding quantification results (H, n = 5). Scale bar= 50 µm. (I) Transcriptome heatmap analysis showing the differential expression of genes in the control group versus that in the CRS group. (J,K) KEGG pathway enrichment analysis showing the involvement of the FoxO signaling pathway in CRS-induced stress. (L,M) Difference in the expression levels of CDKN1A and SGK1 in the control group versus those in the CRS group. *P<0.05, **P<0.01. n.s., no significant difference.
Fig.3  CBD treatment improved depressive-like behaviors in CRS mice. (A) Schematic of the experimental design and timeline of CBD administration, CRS stimulus, and behavioral tests. (B–D) Percentage of preference for sucrose solution in the SPT (B), total water consumption (C), and immobility time in the FST (D) in the control, CRS, and CBD treatment (5 mg/kg or 10 mg/kg) groups (n = 12–15). (E) Serum corticosterone levels in the control, CRS, and CBD treatment (5 mg/kg or 10 mg/kg) groups (n = 7–8). (F,H) Locomotor distance in the OFT (F), time spent in the open arm in the EPM (G), and representative EPM behavioral trace (H) in the control, CRS, and CBD treatment (5 mg/kg or 10 mg/kg) groups (n = 12–15). (I,J) Representative confocal images showing Ki-67-labeled cells in the DG after CRS (I) and the corresponding quantification results (J, n = 5). Scale bar= 50 µm. *P<0.05, **P<0.01, ***P<0.001. n.s., no significant difference.
Fig.4  CBD treatment prevented abnormal neurogenesis in CRS mice. (A) Representative confocal microscopy images showing nestin-, DCX-, NeuN-, and GFAP-labeled cells in DG in the control, CRS, and CBD treatment (5 mg/kg or 10 mg/kg) groups. Scale bar= 50 µm. (B–E) Quantification of the number of nestin-, DCX-, NeuN-, and GFAP-labeled cells in the control, CRS, and CRS+ CBD groups (n = 5). *P<0.05, **P<0.01. n.s., no significant difference.
Fig.5  CBD treatment affected the differentiation fate of neural stem cells in CRS mice. (A) Schematic of the experimental design and timeline of BrdU administration, CBD administration, and CRS stimulation. (B,D) Representative confocal images showing BrdU-labeled and BrdU/NeuN-colabeled cells in the DG in the control, CRS, and CBD treatment (5 mg/kg or 10 mg/kg) groups (B) and the corresponding quantification results (D, n = 5). Scale bar= 50 µm. (C,E) Representative confocal images showing BrdU-labeled and BrdU/GFAP-colabeled cells in the DG in the control, CRS, and CBD treatment (5 mg/kg or 10 mg/kg) groups (C) and the corresponding quantification results (E, n = 5). Scale bar= 50 µm. *P<0.05, **P<0.01. n.s., no significant difference.
Fig.6  FoxO signaling pathway is involved in the antidepressive effect of CBD in vitro and in vivo. (A) Transcriptome heatmap analysis of genes that were differentially expressed between the CRS alone group versus the 10 mg/kg CBD treatment group. (B,C) KEGG pathway enrichment analysis showing the trends and details of the FoxO signaling pathway in the CRS alone group versus those in the 10 mg/kg CBD treatment group. (D,E) Difference in the expression levels of CDKN1A and SGK1 in the CRS alone group versus those in the 10 mg/kg CBD treatment group. (F,G) Effects of CBD treatment on the mRNA levels of CDKN1A and SGK1 in CRS mice were analyzed by using RT-PCR. (H) Effect of corticosterone (30 μmol/L), CBD (10 μmol/L), and wortmannin (20 μmol/L) on the growth of NE-4C neural stem cells. Cell viability was measured by MTT after treatment with corticosterone, CBD, and wortmannin either alone or in combination. (I,J) Effect of corticosterone, CBD, and wortmannin treatment on the proteins of the FoxO signaling pathway. mTOR and FOXO3A protein levels were analyzed by using Western blot analysis. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. n.s., no significant difference
1 ES Wohleb, T Franklin, M Iwata, RS Duman. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci 2016; 17(8): 497–511
https://doi.org/10.1038/nrn.2016.69 pmid: 27277867
2 J Flint, KS Kendler. The genetics of major depression. Neuron 2014; 81(3): 484–503
https://doi.org/10.1016/j.neuron.2014.01.027 pmid: 24507187
3 EJ Nestler, M Barrot, RJ DiLeone, AJ Eisch, SJ Gold, LM Monteggia. Neurobiology of depression. Neuron 2002; 34(1): 13–25
https://doi.org/10.1016/S0896-6273(02)00653-0 pmid: 11931738
4 L Micheli, M Ceccarelli, G D’Andrea, F Tirone. Depression and adult neurogenesis: positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res Bull 2018; 143: 181–193
https://doi.org/10.1016/j.brainresbull.2018.09.002 pmid: 30236533
5 C Anacker, R Hen. Adult hippocampal neurogenesis and cognitive flexibility—linking memory and mood. Nat Rev Neurosci 2017; 18(6): 335–346
https://doi.org/10.1038/nrn.2017.45 pmid: 28469276
6 L Sun, Q Sun, J Qi. Adult hippocampal neurogenesis: an important target associated with antidepressant effects of exercise. Rev Neurosci 2017; 28(7): 693–703
https://doi.org/10.1515/revneuro-2016-0076 pmid: 28422706
7 T Toda, SL Parylak, SB Linker, FH Gage. The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry 2019; 24(1): 67–87
https://doi.org/10.1038/s41380-018-0036-2 pmid: 29679070
8 JS Snyder, A Soumier, M Brewer, J Pickel, HA Cameron. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 2011; 476(7361): 458–461
https://doi.org/10.1038/nature10287 pmid: 21814201
9 C Mirescu, E Gould. Stress and adult neurogenesis. Hippocampus 2006; 16(3): 233–238
https://doi.org/10.1002/hipo.20155 pmid: 16411244
10 S Jung, S Choe, H Woo, H Jeong, HK An, H Moon, HY Ryu, BK Yeo, YW Lee, H Choi, JY Mun, W Sun, HK Choe, EK Kim, SW Yu. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy 2020; 16(3): 512–530
https://doi.org/10.1080/15548627.2019.1630222 pmid: 31234698
11 C Anacker, VM Luna, GS Stevens, A Millette, R Shores, JC Jimenez, B Chen, R Hen. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature 2018; 559(7712): 98–102
https://doi.org/10.1038/s41586-018-0262-4 pmid: 29950730
12 O Devinsky, MR Cilio, H Cross, J Fernandez-Ruiz, J French, C Hill, R Katz, V Di Marzo, D Jutras-Aswad, WG Notcutt, J Martinez-Orgado, PJ Robson, BG Rohrback, E Thiele, B Whalley, D Friedman. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 2014; 55(6): 791–802
https://doi.org/10.1111/epi.12631 pmid: 24854329
13 AC Campos, MV Fogaça, AB Sonego, FS Guimarães. Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol Res 2016; 112: 119–127
https://doi.org/10.1016/j.phrs.2016.01.033 pmid: 26845349
14 R Linge, L Jiménez-Sánchez, L Campa, F Pilar-Cuéllar, R Vidal, A Pazos, A Adell, Á Díaz. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: role of 5-HT1A receptors. Neuropharmacology 2016; 103: 16–26
https://doi.org/10.1016/j.neuropharm.2015.12.017 pmid: 26711860
15 S Pisanti, AM Malfitano, E Ciaglia, A Lamberti, R Ranieri, G Cuomo, M Abate, G Faggiana, MC Proto, D Fiore, C Laezza, M Bifulco. Cannabidiol: state of the art and new challenges for therapeutic applications. Pharmacol Ther 2017; 175: 133–150
https://doi.org/10.1016/j.pharmthera.2017.02.041 pmid: 28232276
16 C Scuderi, DD Filippis, T Iuvone, A Blasio, A Steardo, G Esposito. Cannabidiol in medicine: a review of its therapeutic potential in CNS disorders. Phytother Res 2009; 23(5): 597–602
https://doi.org/10.1002/ptr.2625 pmid: 18844286
17 A Berardi, G Schelling, P Campolongo. The endocannabinoid system and post traumatic stress disorder (PTSD): from preclinical findings to innovative therapeutic approaches in clinical settings. Pharmacol Res 2016; 111: 668–678
https://doi.org/10.1016/j.phrs.2016.07.024 pmid: 27456243
18 V Micale, V Di Marzo, A Sulcova, CT Wotjak, F Drago. Endocannabinoid system and mood disorders: priming a target for new therapies. Pharmacol Ther 2013; 138(1): 18–37
https://doi.org/10.1016/j.pharmthera.2012.12.002 pmid: 23261685
19 RN Moda-Sava, MH Murdock, PK Parekh, RN Fetcho, BS Huang, TN Huynh, J Witztum, DC Shaver, DL Rosenthal, EJ Alway, K Lopez, Y Meng, L Nellissen, L Grosenick, TA Milner, K Deisseroth, H Bito, H Kasai, C Liston. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science 2019; 364(6436): eaat8078
pmid: 30975859
20 L Huang, Y Xi, Y Peng, Y Yang, X Huang, Y Fu, Q Tao, J Xiao, T Yuan, K An, H Zhao, M Pu, F Xu, T Xue, M Luo, KF So, C Ren. A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron 2019; 102(1): 128–142.e8
https://doi.org/10.1016/j.neuron.2019.01.037 pmid: 30795900
21 Y Wang, ZP Chen, H Hu, J Lei, Z Zhou, B Yao, L Chen, G Liang, S Zhan, X Zhu, F Jin, R Ma, J Zhang, H Liang, M Xing, XR Chen, CY Zhang, JN Zhu, X Chen. Sperm microRNAs confer depression susceptibility to offspring. Sci Adv 2021; 7(7): eabd7605
https://doi.org/10.1126/sciadv.abd7605 pmid: 33568480
22 Y Yang, Y Cui, K Sang, Y Dong, Z Ni, S Ma, H Hu. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 2018; 554(7692): 317–322
https://doi.org/10.1038/nature25509 pmid: 29446381
23 DC Fernandez, PM Fogerson, L Lazzerini Ospri, MB Thomsen, RM Layne, D Severin, J Zhan, JH Singer, A Kirkwood, H Zhao, DM Berson, S Hattar. Light affects mood and learning through distinct retina-brain pathways. Cell 2018; 175(1): 71–84.e18
https://doi.org/10.1016/j.cell.2018.08.004 pmid: 30173913
24 ZP Chen, XY Zhang, SY Peng, ZQ Yang, YB Wang, YX Zhang, X Chen, JJ Wang, JN Zhu. Histamine H1 receptor contributes to vestibular compensation. J Neurosci 2019; 39(3): 420–433
https://doi.org/10.1523/JNEUROSCI.1350-18.2018 pmid: 30413645
25 JM Encinas, TV Michurina, N Peunova, JH Park, J Tordo, DA Peterson, G Fishell, A Koulakov, G Enikolopov. Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 2011; 8(5): 566–579 PMID:21549330
https://doi.org/10.1016/j.stem.2011.03.010
26 A Sierra, S Martín-Suárez, R Valcárcel-Martín, J Pascual-Brazo, SA Aelvoet, O Abiega, JJ Deudero, AL Brewster, I Bernales, AE Anderson, V Baekelandt, M Maletić-Savatić, JM Encinas. Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal neurogenesis. Cell Stem Cell 2015; 16(5): 488–503
https://doi.org/10.1016/j.stem.2015.04.003 pmid: 25957904
27 T Huang, T Xu, Y Wang, Y Zhou, D Yu, Z Wang, L He, Z Chen, Y Zhang, D Davidson, Y Dai, C Hang, X Liu, C Yan. Cannabidiol inhibits human glioma by induction of lethal mitophagy through activating TRPV4. Autophagy 2021; 25: 1–15
pmid: 33629929
28 A Fiksdal, L Hanlin, Y Kuras, D Gianferante, X Chen, MV Thoma, N Rohleder. Associations between symptoms of depression and anxiety and cortisol responses to and recovery from acute stress. Psychoneuroendocrinology 2019; 102: 44–52
https://doi.org/10.1016/j.psyneuen.2018.11.035 pmid: 30513499
29 J Dong, YB Pan, XR Wu, LN He, XD Liu, DF Feng, TL Xu, S Sun, NJ Xu. A neuronal molecular switch through cell-cell contact that regulates quiescent neural stem cells. Sci Adv 2019; 5(2): eaav4416
https://doi.org/10.1126/sciadv.aav4416 pmid: 30820459
30 JS Kaplan, N Stella, WA Catterall, RE Westenbroek. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proc Natl Acad Sci USA 2017; 114(42): 11229–11234
https://doi.org/10.1073/pnas.1711351114 pmid: 28973916
31 E Tunc-Ozcan, CY Peng, Y Zhu, SR Dunlop, A Contractor, JA Kessler. Activating newborn neurons suppresses depression and anxiety-like behaviors. Nat Commun 2019; 10(1): 3768
https://doi.org/10.1038/s41467-019-11641-8 pmid: 31434877
32 AJ Eisch, D Petrik. Depression and hippocampal neurogenesis: a road to remission? Science 2012; 338(6103): 72–75
https://doi.org/10.1126/science.1222941 pmid: 23042885
33 L Peng, MA Bonaguidi. Function and dysfunction of adult hippocampal neurogenesis in regeneration and disease. Am J Pathol 2018; 188(1): 23–28
https://doi.org/10.1016/j.ajpath.2017.09.004 pmid: 29030053
34 MV Fogaça, AC Campos, LD Coelho, RS Duman, FS Guimarães. The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: role of neurogenesis and dendritic remodeling. Neuropharmacology 2018; 135: 22–33
https://doi.org/10.1016/j.neuropharm.2018.03.001 pmid: 29510186
35 AC Campos, FA Moreira, FV Gomes, EA Del Bel, FS Guimarães. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philos Trans R Soc Lond B Biol Sci 2012; 367(1607): 3364–3378
https://doi.org/10.1098/rstb.2011.0389 pmid: 23108553
36 AC Campos, Z Ortega, J Palazuelos, MV Fogaça, DC Aguiar, J Díaz-Alonso, S Ortega-Gutiérrez, H Vázquez-Villa, FA Moreira, M Guzmán, I Galve-Roperh, FS Guimarães. The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system. Int J Neuropsychopharmacol 2013; 16(6): 1407–1419
https://doi.org/10.1017/S1461145712001502 pmid: 23298518
37 TA Furukawa, A Cipriani, PJ Cowen, S Leucht, M Egger, G Salanti. Optimal dose of selective serotonin reuptake inhibitors, venlafaxine, and mirtazapine in major depression: a systematic review and dose-response meta-analysis. Lancet Psychiatry 2019; 6(7): 601–609
https://doi.org/10.1016/S2215-0366(19)30217-2 pmid: 31178367
38 TV Zanelati, C Biojone, FA Moreira, FS Guimarães, SR Joca. Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A receptors. Br J Pharmacol 2010; 159(1): 122–128
https://doi.org/10.1111/j.1476-5381.2009.00521.x pmid: 20002102
39 YVM Lages, AD Rossi, TE Krahe, J Landeira-Fernandez. Effect of chronic unpredictable mild stress on the expression profile of serotonin receptors in rats and mice: a meta-analysis. Neurosci Biobehav Rev 2021; 124: 78–88
https://doi.org/10.1016/j.neubiorev.2021.01.020 pmid: 33524415
40 JD Hill, V Zuluaga-Ramirez, S Gajghate, M Winfield, Y Persidsky. Activation of GPR55 increases neural stem cell proliferation and promotes early adult hippocampal neurogenesis. Br J Pharmacol 2018; 175(16): 3407–3421
https://doi.org/10.1111/bph.14387 pmid: 29888782
[1] FMD-21050-OF-CZP_suppl_1 Download
[1] Yang Liao, Qu Xing, Qianqian Li, Jing Zhang, Ruiyuan Pan, Zengqiang Yuan. Astrocytes in depression and Alzheimer’s disease[J]. Front. Med., 2021, 15(6): 829-841.
[2] Liping Xuan, Zhiyun Zhao, Xu Jia, Yanan Hou, Tiange Wang, Mian Li, Jieli Lu, Yu Xu, Yuhong Chen, Lu Qi, Weiqing Wang, Yufang Bi, Min Xu. Type 2 diabetes is causally associated with depression: a Mendelian randomization analysis[J]. Front. Med., 2018, 12(6): 678-687.
[3] Han Wang, Hong Zhou, Yan Zhang, Yan Wang, Jing Sun. Association of maternal depression with dietary intake, growth, and development of preterm infants: a cohort study in Beijing, China[J]. Front. Med., 2018, 12(5): 533-541.
[4] Yujiao Liu,Chao Liu,Wen Dong,Wei Li. Physiological functions and clinical implications of the N-end rule pathway[J]. Front. Med., 2016, 10(3): 258-270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed