|
|
|
Recombinant protein diannexin prevents preeclampsia-like symptoms in a pregnant mouse model via reducing the release of microparticles |
Han Guo1, Yuncong Zhang2, Yaxin Chu1, Shuo Yang1, Jie Zhang1, Rui Qiao1( ) |
1. Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China 2. Department of Clinical Laboratory, Peking University International Hospital, Beijing 102206, China |
|
|
|
|
Abstract Preeclampsia (PE) is characterized by placenta-mediated pregnancy complication. The only effective treatment for PE is the delivery of the placenta. However, this treatment may cause preterm birth and neonatal death. Therefore, preventing PE is needed. The mechanism of PE involves abnormal placentation, which leads to the release of anti-angiogenic and inflammatory mediators into maternal circulation. These mediators contribute to systemic vascular dysfunction, inflammatory responses, and excessive thrombin generation. Microparticles (MPs) are reportedly involved in PE by promoting the thromboinflammatory response. This study describes a strategy to prevent PE by reducing MP release using the recombinant protein, diannexin. Results showed that the patients with PE had elevated MP number and procoagulant activity and increased NLRP3 inflammasome activation. Additionally, diannexin remarkably reduced the release of MPs from activated cells by binding to phosphatidylserine exposed on the surface of activated cells. Moreover, in vivo results showed that diannexin could prevent PE-like symptoms by decreasing MPs and NLRP3 inflammasome activation in pregnant mice. Furthermore, diannexin effectively inhibited trophoblast cell activation and NLRP3 inflammasome activation in vitro. These findings suggested that diannexin inhibited MP release and might be an effective therapeutic strategy for preventing PE.
|
| Keywords
preeclampsia
recombinant protein diannexin
microparticle
NLRP3 inflammasome
phosphatidylserin
|
|
Corresponding Author(s):
Rui Qiao
|
|
Just Accepted Date: 06 July 2022
Online First Date: 03 November 2022
Issue Date: 16 January 2023
|
|
| 1 |
MA Brown, LA Magee, LC Kenny, SA Karumanchi, FP McCarthy, S Saito, DR Hall, CE Warren, G Adoyi, S; International Society for the Study of Hypertension in Pregnancy (ISSHP) Ishaku. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens 2018; 13: 291–310
https://doi.org/10.1016/j.preghy.2018.05.004
pmid: 29803330
|
| 2 |
L Duley. The global impact of pre-eclampsia and eclampsia. Semin Perinatol 2009; 33(3): 130–137
https://doi.org/10.1053/j.semperi.2009.02.010
pmid: 19464502
|
| 3 |
A Bokslag, M van Weissenbruch, BW Mol, CJ de Groot. Preeclampsia; short and long-term consequences for mother and neonate. Early Hum Dev 2016; 102: 47–50
https://doi.org/10.1016/j.earlhumdev.2016.09.007
pmid: 27659865
|
| 4 |
JT Henderson, EP Whitlock, E O’Connor, CA Senger, JH Thompson, MG Rowland. Low-dose aspirin for prevention of morbidity and mortality from preeclampsia: a systematic evidence review for the U. S. Preventive Services Task Force. Ann Intern Med 2014; 160(10): 695–703
https://doi.org/10.7326/M13-2844
pmid: 24711050
|
| 5 |
T Chaiworapongsa, P Chaemsaithong, L Yeo, R Romero. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol 2014; 10(8): 466–480
https://doi.org/10.1038/nrneph.2014.102
pmid: 25003615
|
| 6 |
EA Phipps, R Thadhani, T Benzing, SA Karumanchi. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol 2019; 15(5): 275–289
https://doi.org/10.1038/s41581-019-0119-6
pmid: 30792480
|
| 7 |
EA Steegers, P von Dadelszen, JJ Duvekot, R Pijnenborg. Pre-eclampsia. Lancet 2010; 376(9741): 631–644
https://doi.org/10.1016/S0140-6736(10)60279-6
pmid: 20598363
|
| 8 |
D Roberts, RS Schwartz. Clotting and hemorrhage in the placenta—a delicate balance. N Engl J Med 2002; 347(1): 57–59
https://doi.org/10.1056/NEJMe020061
pmid: 12097543
|
| 9 |
H Shao, H Im, CM Castro, X Breakefield, R Weissleder, H Lee. New technologies for analysis of extracellular vesicles. Chem Rev 2018; 118(4): 1917–1950
https://doi.org/10.1021/acs.chemrev.7b00534
pmid: 29384376
|
| 10 |
C Simon, DW Greening, D Bolumar, N Balaguer, LA Salamonsen, F Vilella. Extracellular vesicles in human reproduction in health and disease. Endocr Rev 2018; 39(3): 292–332
https://doi.org/10.1210/er.2017-00229
pmid: 29390102
|
| 11 |
Y Zhang, C Zhao, Y Wei, S Yang, C Cui, J Yang, J Zhang, R Qiao. Increased circulating microparticles in women with preeclampsia. Int J Lab Hematol 2018; 40(3): 352–358
https://doi.org/10.1111/ijlh.12796
pmid: 29520961
|
| 12 |
M Salem, S Kamal, W El Sherbiny, AA Abdel Aal. Flow cytometric assessment of endothelial and platelet microparticles in preeclampsia and their relation to disease severity and Doppler parameters. Hematology 2015; 20(3): 154–159
https://doi.org/10.1179/1607845414Y.0000000178
pmid: 25001068
|
| 13 |
VanWijk MJ, Nieuwland R, Boer K, van der Post JA, VanBavel E, Sturk A. Microparticle subpopulations are increased in preeclampsia: possible involvement in vascular dysfunction? Am J Obstet Gynecol 2002; 187(2): 450–456 doi:10.1067/mob.2002.124279
pmid: 12193942
|
| 14 |
S Kohli, S Ranjan, J Hoffmann, M Kashif, EA Daniel, MM Al-Dabet, F Bock, S Nazir, H Huebner, PR Mertens, KD Fischer, AC Zenclussen, S Offermanns, A Aharon, B Brenner, K Shahzad, M Ruebner, B Isermann. Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts. Blood 2016; 128(17): 2153–2164
https://doi.org/10.1182/blood-2016-03-705434
pmid: 27589872
|
| 15 |
JI Zwicker, CC 3rd Trenor, BC Furie, B Furie. Tissue factor-bearing microparticles and thrombus formation. Arterioscler Thromb Vasc Biol 2011; 31(4): 728–733
https://doi.org/10.1161/ATVBAHA.109.200964
pmid: 21252066
|
| 16 |
PE Rautou, AS Leroyer, B Ramkhelawon, C Devue, D Duflaut, AC Vion, G Nalbone, Y Castier, G Leseche, S Lehoux, A Tedgui, CM Boulanger. Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circ Res 2011; 108(3): 335–343
https://doi.org/10.1161/CIRCRESAHA.110.237420
pmid: 21164106
|
| 17 |
WL Van Heerde, P Lap, S Schoormans, PG de Groot, CPM Reutelingsperger, TM Vrooms. Localization of annexin A5 in human tissues. Annexins 2004; 1: 37–43
|
| 18 |
L Ungethüm, H Kenis, GA Nicolaes, L Autin, S Stoilova-McPhie, CP Reutelingsperger. Engineered annexin A5 variants have impaired cell entry for molecular imaging of apoptosis using pretargeting strategies. J Biol Chem 2011; 286(3): 1903–1910
https://doi.org/10.1074/jbc.M110.163527
pmid: 21078669
|
| 19 |
H Kenis, H van Genderen, A Bennaghmouch, HA Rinia, P Frederik, J Narula, L Hofstra, CP Reutelingsperger. Cell surface-expressed phosphatidylserine and annexin A5 open a novel portal of cell entry. J Biol Chem 2004; 279(50): 52623–52629
https://doi.org/10.1074/jbc.M409009200
pmid: 15381697
|
| 20 |
NC Teoh, Y Ito, J Field, NW Bethea, D Amr, MK McCuskey, RS McCuskey, GC Farrell, AC Allison. Diannexin, a novel annexin V homodimer, provides prolonged protection against hepatic ischemia-reperfusion injury in mice. Gastroenterology 2007; 133(2): 632–646
https://doi.org/10.1053/j.gastro.2007.05.027
pmid: 17681182
|
| 21 |
ML Rand, H Wang, FG Pluthero, AR Stafford, R Ni, N Vaezzadeh, AC Allison, WH Kahr, JI Weitz, PL Gross. Diannexin, an annexin A5 homodimer, binds phosphatidylserine with high affinity and is a potent inhibitor of platelet-mediated events during thrombus formation. J Thromb Haemost 2012; 10(6): 1109–1119
https://doi.org/10.1111/j.1538-7836.2012.04716.x
pmid: 22463102
|
| 22 |
H Ueki, T Mizushina, T Laoharatchatathanin, R Terashima, Y Nishimura, D Rieanrakwong, T Yonezawa, S Kurusu, Y Hasegawa, B Brachvogel, E Pöschl, M Kawaminami. Loss of maternal annexin A5 increases the likelihood of placental platelet thrombosis and foetal loss. Sci Rep 2012; 2(1): 827
https://doi.org/10.1038/srep00827
pmid: 23145320
|
| 23 |
V Gourvas, N Soulitzis, A Konstantinidou, E Dalpa, O Koukoura, D Koutroulakis, DA Spandidos, S Sifakis. Reduced ANXA5 mRNA and protein expression in pregnancies complicated by preeclampsia. Thromb Res 2014; 133(3): 495–500
https://doi.org/10.1016/j.thromres.2013.12.027
pmid: 24393658
|
| 24 |
E Shomer, S Katzenell, Y Zipori, RN Sammour, B Isermann, B Brenner, A Aharon. Microvesicles of women with gestational hypertension and preeclampsia affect human trophoblast fate and endothelial function. Hypertension 2013; 62(5): 893–898
https://doi.org/10.1161/HYPERTENSIONAHA.113.01494
pmid: 24082057
|
| 25 |
E Biró, CA Lok, CE Hack, der Post JA van, MC Schaap, A Sturk, R Nieuwland. Cell-derived microparticles and complement activation in preeclampsia versus normal pregnancy. Placenta 2007; 28(8–9): 928–935
https://doi.org/10.1016/j.placenta.2007.02.008
pmid: 17433833
|
| 26 |
K Omatsu, T Kobayashi, Y Murakami, M Suzuki, R Ohashi, M Sugimura, N Kanayama. Phosphatidylserine/phosphatidylcholine microvesicles can induce preeclampsia-like changes in pregnant mice. Semin Thromb Hemost 2005; 31(3): 314–320
https://doi.org/10.1055/s-2005-872438
pmid: 16052403
|
| 27 |
S Baig, N Kothandaraman, J Manikandan, L Rong, KH Ee, J Hill, CW Lai, WY Tan, F Yeoh, A Kale, LL Su, A Biswas, S Vasoo, M Choolani. Proteomic analysis of human placental syncytiotrophoblast microvesicles in preeclampsia. Clin Proteomics 2014; 11(1): 40
https://doi.org/10.1186/1559-0275-11-40
pmid: 25469110
|
| 28 |
S KohliB Isermann. Placental hemostasis and sterile inflammation: new insights into gestational vascular disease. Thromb Res 2017; 151(Suppl 1): S30–S33 doi:10.1016/S0049-3848(17)30063-4
pmid: 28262230
|
| 29 |
M Tong, Q Chen, JL James, PR Stone, LW Chamley. Micro- and nano-vesicles from first trimester human placentae carry Flt-1 and levels are increased in severe preeclampsia. Front Endocrinol (Lausanne) 2017; 8: 174
https://doi.org/10.3389/fendo.2017.00174
pmid: 28790977
|
| 30 |
SJ Germain, GP Sacks, SR Sooranna, IL Sargent, CW Redman. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J Immunol 2007; 178(9): 5949–5956
https://doi.org/10.4049/jimmunol.178.9.5949
pmid: 17442979
|
| 31 |
M Messerli, K May, SR Hansson, H Schneider, W Holzgreve, S Hahn, C Rusterholz. Feto-maternal interactions in pregnancies: placental microparticles activate peripheral blood monocytes. Placenta 2010; 31(2): 106–112
https://doi.org/10.1016/j.placenta.2009.11.011
pmid: 20005571
|
| 32 |
C Han, C Wang, Y Chen, J Wang, X Xu, T Hilton, W Cai, Z Zhao, Y Wu, K Li, K Houck, L Liu, AK Sood, X Wu, F Xue, M Li, JF Dong, J Zhang. Placenta-derived extracellular vesicles induce preeclampsia in mouse models. Haematologica 2020; 105(6): 1686–1694
https://doi.org/10.3324/haematol.2019.226209
pmid: 31439676
|
| 33 |
S Ravassa, A Bennaghmouch, H Kenis, T Lindhout, T Hackeng, J Narula, L Hofstra, C Reutelingsperger. Annexin A5 down-regulates surface expression of tissue factor: a novel mechanism of regulating the membrane receptor repertoir. J Biol Chem 2005; 280(7): 6028–6035
https://doi.org/10.1074/jbc.M411710200
pmid: 15576370
|
| 34 |
P Thiagarajan, CR Benedict. Inhibition of arterial thrombosis by recombinant annexin V in a rabbit carotid artery injury model. Circulation 1997; 96(7): 2339–2347
https://doi.org/10.1161/01.CIR.96.7.2339
pmid: 9337209
|
| 35 |
FA Kuypers, SK Larkin, JJ Emeis, AC Allison. Interaction of an annexin V homodimer (diannexin) with phosphatidylserine on cell surfaces and consequent antithrombotic activity. Thromb Haemost 2007; 97(3): 478–486
https://doi.org/10.1160/TH06-08-0436
pmid: 17334517
|
| 36 |
V Combes, SL Latham, B Wen, AC Allison, GE Grau. Diannexin down-modulates TNF-induced endothelial microparticle release by blocking membrane budding process. Int J Innov Med Health Sci 2016; 7: 1–11
https://doi.org/10.20530/IJIMHS_7_1-11
pmid: 28149531
|
| 37 |
Y Zhou, W Cai, Z Zhao, T Hilton, M Wang, J Yeon, W Liu, F Zhang, FD Shi, X Wu, P Thiagarajan, M Li, J Zhang, JF Dong. Lactadherin promotes microvesicle clearance to prevent coagulopathy and improves survival of severe TBI mice. Blood 2018; 131(5): 563–572
https://doi.org/10.1182/blood-2017-08-801738
pmid: 29162596
|
| 38 |
JT Powell, DS Tsapepas, ST Martin, MA Hardy, LE Ratner. Managing renal transplant ischemia reperfusion injury: novel therapies in the pipeline. Clin Transplant 2013; 27(4): 484–491
https://doi.org/10.1111/ctr.12121
pmid: 23614480
|
| 39 |
KE Wever, FA Wagener, C Frielink, OC Boerman, GJ Scheffer, A Allison, R Masereeuw, GA Rongen. Diannexin protects against renal ischemia reperfusion injury and targets phosphatidylserines in ischemic tissue. PLoS One 2011; 6(8): e24276
https://doi.org/10.1371/journal.pone.0024276
pmid: 21918686
|
| 40 |
EY Cheng, VK Sharma, C Chang, R Ding, AC Allison, DB Leeser, M Suthanthiran, H Yang. Diannexin decreases inflammatory cell infiltration into the islet graft, reduces β-cell apoptosis, and improves early graft function. Transplantation 2010; 90(7): 709–716
https://doi.org/10.1097/TP.0b013e3181ed55d8
pmid: 20634785
|
| 41 |
K Hashimoto, H Kim, H Oishi, M Chen, I Iskender, J Sakamoto, A Ohsumi, Z Guan, D Hwang, TK Waddell, M Cypel, M Liu, S Keshavjee. Annexin V homodimer protects against ischemia reperfusion-induced acute lung injury in lung transplantation. J Thorac Cardiovasc Surg 2016; 151(3): 861–869
https://doi.org/10.1016/j.jtcvs.2015.10.112
pmid: 26725713
|
| 42 |
NC Teoh, H Ajamieh, HJ Wong, K Croft, T Mori, AC Allison, GC Farrell. Microparticles mediate hepatic ischemia-reperfusion injury and are the targets of diannexin (ASP8597). PLoS One 2014; 9(9): e104376
https://doi.org/10.1371/journal.pone.0104376
pmid: 25222287
|
| 43 |
IC Weel, M Romão-Veiga, ML Matias, EG Fioratti, JC Peraçoli, VT Borges, JP Jr Araujo, MT Peraçoli. Increased expression of NLRP3 inflammasome in placentas from pregnant women with severe preeclampsia. J Reprod Immunol 2017; 123: 40–47
https://doi.org/10.1016/j.jri.2017.09.002
|
| 44 |
Z Liu, X Zhao, H Shan, H Gao, P Wang. MicroRNA-520c-3p suppresses NLRP3 inflammasome activation and inflammatory cascade in preeclampsia by downregulating NLRP3. Inflamm Res 2019; 68(8): 643–654
https://doi.org/10.1007/s00011-019-01246-8
pmid: 31143973
|
| 45 |
Q Qiu, Z Yang, F Cao, C Yang, P Hardy, X Yan, S Yang, W Xiong. Activation of NLRP3 inflammasome by lymphocytic microparticles via TLR4 pathway contributes to airway inflammation. Exp Cell Res 2020; 386(2): 111737
https://doi.org/10.1016/j.yexcr.2019.111737
pmid: 31759058
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|