|
|
Targeting apoptosis to manage acquired resistance to third generation EGFR inhibitors |
Shi-Yong Sun( ) |
Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA |
|
|
Abstract A significant clinical challenge in lung cancer treatment is management of the inevitable acquired resistance to third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs), such as osimertinib, which have shown remarkable success in the treatment of advanced NSCLC with EGFR activating mutations, in order to achieve maximal response duration or treatment remission. Apoptosis is a major type of programmed cell death tightly associated with cancer development and treatment. Evasion of apoptosis is considered a key hallmark of cancer and acquisition of apoptosis resistance is accordingly a key mechanism of drug acquired resistance in cancer therapy. It has been clearly shown that effective induction of apoptosis is a key mechanism for third generation EGFR-TKIs, particularly osimertinib, to exert their therapeutic efficacies and the development of resistance to apoptosis is tightly associated with the emergence of acquired resistance. Hence, restoration of cell sensitivity to undergo apoptosis using various means promises an effective strategy for the management of acquired resistance to third generation EGFR-TKIs.
|
Keywords
acquired resistance
EGFR inhibitor
apoptosis
lung cancer
|
Corresponding Author(s):
Shi-Yong Sun
|
Just Accepted Date: 17 August 2022
Online First Date: 22 September 2022
Issue Date: 18 November 2022
|
|
1 |
RL Siegel, KD Miller, HE Fuchs, A Jemal. Cancer statistics, 2022. CA Cancer J Clin 2022; 72( 1): 7– 33
https://doi.org/10.3322/caac.21708
pmid: 35020204
|
2 |
H Sung, J Ferlay, RL Siegel, M Laversanne, I Soerjomataram, A Jemal, F Bray. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71( 3): 209– 249
https://doi.org/10.3322/caac.21660
pmid: 33538338
|
3 |
ZH Tang, JJ Lu. Osimertinib resistance in non-small cell lung cancer: mechanisms and therapeutic strategies. Cancer Lett 2018; 420 : 242– 246
https://doi.org/10.1016/j.canlet.2018.02.004
pmid: 29425688
|
4 |
SS Ramalingam, J Vansteenkiste, D Planchard, BC Cho, JE Gray, Y Ohe, C Zhou, T Reungwetwattana, Y Cheng, B Chewaskulyong, R Shah, M Cobo, KH Lee, P Cheema, M Tiseo, T John, MC Lin, F Imamura, T Kurata, A Todd, R Hodge, M Saggese, Y Rukazenkov, JC; FLAURA Investigators Soria. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med 2020; 382( 1): 41– 50
https://doi.org/10.1056/NEJMoa1913662
pmid: 31751012
|
5 |
JC Soria, Y Ohe, J Vansteenkiste, T Reungwetwattana, B Chewaskulyong, KH Lee, A Dechaphunkul, F Imamura, N Nogami, T Kurata, I Okamoto, C Zhou, BC Cho, Y Cheng, EK Cho, PJ Voon, D Planchard, WC Su, JE Gray, SM Lee, R Hodge, M Marotti, Y Rukazenkov, SS; FLAURA Investigators Ramalingam. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 2018; 378( 2): 113– 125
https://doi.org/10.1056/NEJMoa1713137
pmid: 29151359
|
6 |
S Lu, Q Wang, G Zhang, X Dong, CT Yang, Y Song, GC Chang, Y Lu, H Pan, CH Chiu, Z Wang, J Feng, J Zhou, X Xu, R Guo, J Chen, H Yang, Y Chen, Z Yu, HS Shiah, CC Wang, N Yang, J Fang, P Wang, K Wang, Y Hu, J He, Z Wang, J Shi, S Chen, Q Wu, C Sun, C Li, H Wei, Y Cheng, WC Su, TC Hsia, J Cui, Y Sun, SI Ou, VW Zhu, J Chih-Hsin Yang. Efficacy of aumolertinib (HS-10296) in patients with advanced EGFR T790M+ NSCLC: updated post-national medical products administration approval results from the APOLLO registrational trial. J Thorac Oncol 2022; 17( 3): 411– 422
https://doi.org/10.1016/j.jtho.2021.10.024
pmid: 34801749
|
7 |
D Romero. Aumolertinib is effective in NSCLC. Nat Rev Clin Oncol 2022; 19( 1): 6
https://doi.org/10.1038/s41571-021-00586-x
pmid: 34845385
|
8 |
S Schmid, JJN Li, NB Leighl. Mechanisms of osimertinib resistance and emerging treatment options. Lung Cancer 2020; 147 : 123– 129
https://doi.org/10.1016/j.lungcan.2020.07.014
pmid: 32693293
|
9 |
D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell 2011; 144( 5): 646– 674
https://doi.org/10.1016/j.cell.2011.02.013
pmid: 21376230
|
10 |
D Hanahan. Hallmarks of cancer: new dimensions. Cancer Discov 2022; 12( 1): 31– 46
https://doi.org/10.1158/2159-8290.CD-21-1059
pmid: 35022204
|
11 |
ST Diepstraten, MA Anderson, PE Czabotar, G Lessene, A Strasser, GL Kelly. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer 2022; 22( 1): 45– 64
https://doi.org/10.1038/s41568-021-00407-4
pmid: 34663943
|
12 |
KC Zimmermann, DR Green. How cells die: apoptosis pathways. J Allergy Clin Immunol 2001; 108( 4 Suppl): S99– S103
https://doi.org/10.1067/mai.2001.117819
pmid: 11586274
|
13 |
MO Hengartner. The biochemistry of apoptosis. Nature 2000; 407( 6805): 770– 776
https://doi.org/10.1038/35037710
pmid: 11048727
|
14 |
A Ashkenazi, VM Dixit. Death receptors: signaling and modulation. Science 1998; 281( 5381): 1305– 1308
https://doi.org/10.1126/science.281.5381.1305
pmid: 9721089
|
15 |
A Ashkenazi, VM Dixit. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999; 11( 2): 255– 260
https://doi.org/10.1016/S0955-0674(99)80034-9
pmid: 10209153
|
16 |
I Lavrik, A Golks, PH Krammer. Death receptor signaling. J Cell Sci 2005; 118( 2): 265– 267
https://doi.org/10.1242/jcs.01610
pmid: 15654015
|
17 |
A Krueger, S Baumann, PH Krammer, S Kirchhoff. FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol 2001; 21( 24): 8247– 8254
https://doi.org/10.1128/MCB.21.24.8247-8254.2001
pmid: 11713262
|
18 |
RC Budd, WC Yeh, J Tschopp. cFLIP regulation of lymphocyte activation and development. Nat Rev Immunol 2006; 6( 3): 196– 204
https://doi.org/10.1038/nri1787
pmid: 16498450
|
19 |
H Wajant. Targeting the FLICE Inhibitory Protein (FLIP) in cancer therapy. Mol Interv 2003; 3( 3): 124– 127
https://doi.org/10.1124/mi.3.3.124
pmid: 14993418
|
20 |
T Kataoka. The caspase-8 modulator c-FLIP. Crit Rev Immunol 2005; 25( 1): 31– 58
https://doi.org/10.1615/CritRevImmunol.v25.i1.30
pmid: 15833082
|
21 |
Y Kim, N Suh, M Sporn, JC Reed. An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem 2002; 277( 25): 22320– 22329
https://doi.org/10.1074/jbc.M202458200
pmid: 11940602
|
22 |
M Poukkula, A Kaunisto, V Hietakangas, K Denessiouk, T Katajamäki, MS Johnson, L Sistonen, JE Eriksson. Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J Biol Chem 2005; 280( 29): 27345– 27355
https://doi.org/10.1074/jbc.M504019200
pmid: 15886205
|
23 |
L Chang, H Kamata, G Solinas, JL Luo, S Maeda, K Venuprasad, YC Liu, M Karin. The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 2006; 124( 3): 601– 613
https://doi.org/10.1016/j.cell.2006.01.021
pmid: 16469705
|
24 |
C Falschlehner, U Schaefer, H Walczak. Following TRAIL’s path in the immune system. Immunology 2009; 127( 2): 145– 154
https://doi.org/10.1111/j.1365-2567.2009.03058.x
pmid: 19476510
|
25 |
RW Johnstone, AJ Frew, MJ Smyth. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 2008; 8( 10): 782– 798
https://doi.org/10.1038/nrc2465
pmid: 18813321
|
26 |
Reilly E O’, A Tirincsi, SE Logue, E Szegezdi. The Janus face of death receptor signaling during tumor immunoediting. Front Immunol 2016; 7 : 446
https://doi.org/10.3389/fimmu.2016.00446
pmid: 27843441
|
27 |
WD Fairlie, EF Lee. Targeting the BCL-2-regulated apoptotic pathway for the treatment of solid cancers. Biochem Soc Trans 2021; 49( 5): 2397– 2410
https://doi.org/10.1042/BST20210750
pmid: 34581776
|
28 |
D Westaby, JM Jimenez-Vacas, A Padilha, A Varkaris, SP Balk, JS de Bono, A Sharp. Targeting the intrinsic apoptosis pathway: a window of opportunity for prostate cancer. Cancers (Basel) 2021; 14( 1): 51
https://doi.org/10.3390/cancers14010051
pmid: 35008216
|
29 |
P Shi, YT Oh, L Deng, G Zhang, G Qian, S Zhang, H Ren, G Wu, B Jr Legendre, E Anderson, SS Ramalingam, TK Owonikoko, M Chen, SY Sun. Overcoming acquired resistance to AZD9291, a third-generation EGFR inhibitor, through modulation of MEK/ERK-dependent Bim and Mcl-1 degradation. Clin Cancer Res 2017; 23( 21): 6567– 6579
https://doi.org/10.1158/1078-0432.CCR-17-1574
pmid: 28765329
|
30 |
X Ge, Y Zhang, F Huang, Y Wu, J Pang, X Li, F Fan, H Liu, S Li. EGFR tyrosine kinase inhibitor almonertinib induces apoptosis and autophagy mediated by reactive oxygen species in non-small cell lung cancer cells. Hum Exp Toxicol 2021; 40( 12_suppl): S49– S62
https://doi.org/10.1177/09603271211030554
pmid: 34219533
|
31 |
P Shi, S Zhang, L Zhu, G Qian, H Ren, SS Ramalingam, M Chen, SY Sun. The third-generation EGFR inhibitor, osimertinib, promotes c-FLIP degradation, enhancing apoptosis including TRAIL-induced apoptosis in NSCLC cells with activating EGFR mutations. Transl Oncol 2019; 12( 5): 705– 713
https://doi.org/10.1016/j.tranon.2019.02.006
pmid: 30856555
|
32 |
S Zhang, Z Chen, P Shi, S Fan, Y He, Q Wang, Y Li, SS Ramalingam, TK Owonikoko, SY Sun. Downregulation of death receptor 4 is tightly associated with positive response of EGFR mutant lung cancer to EGFR-targeted therapy and improved prognosis. Theranostics 2021; 11( 8): 3964– 3980
https://doi.org/10.7150/thno.54824
pmid: 33664875
|
33 |
A Leonetti, S Sharma, R Minari, P Perego, E Giovannetti, M Tiseo. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer 2019; 121( 9): 725– 737
https://doi.org/10.1038/s41416-019-0573-8
pmid: 31564718
|
34 |
CH Weng, LY Chen, YC Lin, JY Shih, YC Lin, RY Tseng, AC Chiu, YH Yeh, C Liu, YT Lin, JM Fang, CC Chen. Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene 2019; 38( 4): 455– 468
https://doi.org/10.1038/s41388-018-0454-2
pmid: 30111817
|
35 |
ZA Yochum, J Cades, H Wang, S Chatterjee, BW Simons, JP O’Brien, SK Khetarpal, G Lemtiri-Chlieh, KV Myers, EH Huang, CM Rudin, PT Tran, TF Burns. Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene 2019; 38( 5): 656– 670
https://doi.org/10.1038/s41388-018-0482-y
pmid: 30171258
|
36 |
TH Chang, MF Tsai, KY Su, SG Wu, CP Huang, SL Yu, YL Yu, CC Lan, CH Yang, SB Lin, CP Wu, JY Shih, PC Yang. Slug confers resistance to the epidermal growth factor receptor tyrosine kinase inhibitor. Am J Respir Crit Care Med 2011; 183( 8): 1071– 1079
https://doi.org/10.1164/rccm.201009-1440OC
pmid: 21037017
|
37 |
KA Song, MJ Niederst, TL Lochmann, AN Hata, H Kitai, J Ham, KV Floros, MA Hicks, H Hu, HE Mulvey, Y Drier, DAR Heisey, MT Hughes, NU Patel, EL Lockerman, A Garcia, S Gillepsie, HL Archibald, M Gomez-Caraballo, TJ Nulton, BE Windle, Z Piotrowska, SE Sahingur, SM Taylor, M Dozmorov, LV Sequist, B Bernstein, H Ebi, JA Engelman, AC Faber. Epithelial-to-mesenchymal transition antagonizes response to targeted therapies in lung cancer by suppressing BIM. Clin Cancer Res 2018; 24( 1): 197– 208
https://doi.org/10.1158/1078-0432.CCR-17-1577
pmid: 29051323
|
38 |
Q Qin, X Li, X Liang, L Zeng, J Wang, L Sun, D Zhong. Targeting the EMT transcription factor Snail overcomes resistance to osimertinib in EGFR-mutant non-small cell lung cancer. Thorac Cancer 2021; 12( 11): 1708– 1715
https://doi.org/10.1111/1759-7714.13906
pmid: 33943009
|
39 |
XM Jiang, YL Xu, LW Yuan, LL Zhang, MY Huang, ZH Ye, MX Su, XP Chen, H Zhu, RD Ye, JJ Lu. TGFβ2-mediated epithelial-mesenchymal transition and NF-κB pathway activation contribute to osimertinib resistance. Acta Pharmacol Sin 2021; 42( 3): 451– 459
https://doi.org/10.1038/s41401-020-0457-8
pmid: 32678313
|
40 |
AC Faber, RB Corcoran, H Ebi, LV Sequist, BA Waltman, E Chung, J Incio, SR Digumarthy, SF Pollack, Y Song, A Muzikansky, E Lifshits, S Roberge, EJ Coffman, CH Benes, HL Gómez, J Baselga, CL Arteaga, MN Rivera, D Dias-Santagata, RK Jain, JA Engelman. BIM expression in treatment-naive cancers predicts responsiveness to kinase inhibitors. Cancer Discov 2011; 1( 4): 352– 365
https://doi.org/10.1158/2159-8290.CD-11-0106
pmid: 22145099
|
41 |
C Costa, MA Molina, A Drozdowskyj, A Giménez-Capitán, J Bertran-Alamillo, N Karachaliou, R Gervais, B Massuti, J Wei, T Moran, M Majem, E Felip, E Carcereny, R Garcia-Campelo, S Viteri, M Taron, M Ono, P Giannikopoulos, T Bivona, R Rosell. The impact of EGFR T790M mutations and BIM mRNA expression on outcome in patients with EGFR-mutant NSCLC treated with erlotinib or chemotherapy in the randomized phase III EURTAC trial. Clin Cancer Res 2014; 20( 7): 2001– 2010
https://doi.org/10.1158/1078-0432.CCR-13-2233
pmid: 24493829
|
42 |
KP Ng, AM Hillmer, CT Chuah, WC Juan, TK Ko, AS Teo, PN Ariyaratne, N Takahashi, K Sawada, Y Fei, S Soh, WH Lee, JW Huang, JC Jr Allen, XY Woo, N Nagarajan, V Kumar, A Thalamuthu, WT Poh, AL Ang, HT Mya, GF How, LY Yang, LP Koh, B Chowbay, CT Chang, VS Nadarajan, WJ Chng, H Than, LC Lim, YT Goh, S Zhang, D Poh, P Tan, JE Seet, MK Ang, NM Chau, QS Ng, DS Tan, M Soda, K Isobe, MM Nöthen, TY Wong, A Shahab, X Ruan, V Cacheux-Rataboul, WK Sung, EH Tan, Y Yatabe, H Mano, RA Soo, TM Chin, WT Lim, Y Ruan, ST Ong. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med 2012; 18( 4): 521– 528
https://doi.org/10.1038/nm.2713
pmid: 22426421
|
43 |
K Isobe, A Kakimoto, T Mikami, K Kaburaki, H Kobayashi, T Yoshizawa, T Makino, H Otsuka, GO Sano, K Sugino, S Sakamoto, Y Takai, N Tochigi, A Iyoda, S Homma. Association of BIM deletion polymorphism and BIM-γ RNA expression in NSCLC with EGFR mutation. Cancer Genomics Proteomics 2016; 13( 6): 475– 482
https://doi.org/10.21873/cgp.20010
pmid: 27807070
|
44 |
SG Wu, YN Liu, CJ Yu, PC Yang, JY Shih. Association of BIM deletion polymorphism with intrinsic resistance to EGFR tyrosine kinase inhibitors in patients with lung adenocarcinoma. JAMA Oncol 2016; 2( 6): 826– 828
https://doi.org/10.1001/jamaoncol.2016.0016
pmid: 27077907
|
45 |
K Isobe, Y Hata, N Tochigi, K Kaburaki, H Kobayashi, T Makino, H Otsuka, F Sato, F Ishida, N Kikuchi, N Hirota, K Sato, G Sano, K Sugino, S Sakamoto, Y Takai, K Shibuya, A Iyoda, S Homma. Clinical significance of BIM deletion polymorphism in non-small-cell lung cancer with epidermal growth factor receptor mutation. J Thorac Oncol 2014; 9( 4): 483– 487
https://doi.org/10.1097/JTO.0000000000000125
pmid: 24736070
|
46 |
JK Lee, JY Shin, S Kim, S Lee, C Park, JY Kim, Y Koh, B Keam, HS Min, TM Kim, YK Jeon, DW Kim, DH Chung, DS Heo, SH Lee, JI Kim. Primary resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in patients with non-small-cell lung cancer harboring TKI-sensitive EGFR mutations: an exploratory study. Ann Oncol 2013; 24( 8): 2080– 2087
https://doi.org/10.1093/annonc/mdt127
pmid: 23559152
|
47 |
A Tanimoto, S Takeuchi, S Arai, K Fukuda, T Yamada, X Roca, ST Ong, S Yano. Histone deacetylase 3 inhibition overcomes BIM deletion polymorphism-mediated osimertinib resistance in EGFR-mutant lung cancer. Clin Cancer Res 2017; 23( 12): 3139– 3149
https://doi.org/10.1158/1078-0432.CCR-16-2271
pmid: 27986747
|
48 |
X Li, D Zhang, B Li, B Zou, S Wang, B Fan, W Li, J Yu, L Wang. Clinical implications of germline BCL2L11 deletion polymorphism in pretreated advanced NSCLC patients with osimertinib therapy. Lung Cancer 2021; 151 : 39– 43
https://doi.org/10.1016/j.lungcan.2020.12.002
pmid: 33296806
|
49 |
K Isobe, T Yoshizawa, M Sekiya, S Miyoshi, Y Nakamura, N Urabe, T Isshiki, S Sakamoto, Y Takai, T Tomida, S Adachi-Akahane, A Iyoda, S Homma, K Kishi. Quantification of BIM mRNA in circulating tumor cells of osimertinib-treated patients with EGFR mutation-positive lung cancer. Respir Investig 2021; 59( 4): 535– 544
https://doi.org/10.1016/j.resinv.2021.03.010
pmid: 33934994
|
50 |
S Chen, L Fu, SM Raja, P Yue, FR Khuri, SY Sun. Dissecting the roles of DR4, DR5 and c-FLIP in the regulation of geranylgeranyltransferase I inhibition-mediated augmentation of TRAIL-induced apoptosis. Mol Cancer 2010; 9( 1): 23
https://doi.org/10.1186/1476-4598-9-23
pmid: 20113484
|
51 |
T Hartwig, A Montinaro, S von Karstedt, A Sevko, S Surinova, A Chakravarthy, L Taraborrelli, P Draber, E Lafont, F Arce Vargas, MA El-Bahrawy, SA Quezada, H Walczak. The TRAIL-induced cancer secretome promotes a tumor-supportive immune microenvironment via CCR2. Mol Cell 2017; 65( 4): 730– 742.e5
https://doi.org/10.1016/j.molcel.2017.01.021
pmid: 28212753
|
52 |
CM Henry, SJ Martin. Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory “FADDosome” complex upon TRAIL stimulation. Mol Cell 2017; 65( 4): 715– 729.e5
https://doi.org/10.1016/j.molcel.2017.01.022
pmid: 28212752
|
53 |
Y Li, H Zang, G Qian, TK Owonikoko, SR Ramalingam, SY Sun. ERK inhibition effectively overcomes acquired resistance of epidermal growth factor receptor-mutant non-small cell lung cancer cells to osimertinib. Cancer 2020; 126( 6): 1339– 1350
https://doi.org/10.1002/cncr.32655
pmid: 31821539
|
54 |
W Jiang, F Cai, H Xu, Y Lu, J Chen, J Liu, N Cao, X Zhang, X Chen, Q Huang, H Zhuang, ZC Hua. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner. Protein Cell 2020; 11( 11): 825– 845
https://doi.org/10.1007/s13238-020-00701-1
pmid: 32144580
|
55 |
J Jiang, LG Zhao, YJ Teng, SL Chen, LP An, JL Ma, J Wang, YY Xia. ERK5 signalling pathway is essential for fluid shear stress-induced COX-2 gene expression in MC3T3-E1 osteoblast. Mol Cell Biochem 2015; 406( 1–2): 237– 243
https://doi.org/10.1007/s11010-015-2441-z
pmid: 25976667
|
56 |
Z Liang, W Xie, R Wu, H Geng, L Zhao, C Xie, X Li, C Huang, J Zhu, M Zhu, W Zhu, J Wu, S Geng, C Zhong. ERK5 negatively regulates tobacco smoke-induced pulmonary epithelial-mesenchymal transition. Oncotarget 2015; 6( 23): 19605– 19618
https://doi.org/10.18632/oncotarget.3747
pmid: 25965818
|
57 |
SJ Park, YS Choi, S Lee, YJ Lee, S Hong, S Han, BC Kim. BIX02189 inhibits TGF-β1-induced lung cancer cell metastasis by directly targeting TGF-β type I receptor. Cancer Lett 2016; 381( 2): 314– 322
https://doi.org/10.1016/j.canlet.2016.08.010
pmid: 27543359
|
58 |
W Zhao, D Yu, Z Chen, W Yao, J Yang, SS Ramalingam, SY Sun. Inhibition of MEK5/ERK5 signaling overcomes acquired resistance to the third generation EGFR inhibitor, osimertinib, via enhancing Bim-dependent apoptosis. Cancer Lett 2021; 519 : 141– 149
https://doi.org/10.1016/j.canlet.2021.07.007
pmid: 34245854
|
59 |
H Zang, G Qian, D Zong, S Fan, TK Owonikoko, SS Ramalingam, SY Sun. Overcoming acquired resistance of epidermal growth factor receptor-mutant non-small cell lung cancer cells to osimertinib by combining osimertinib with the histone deacetylase inhibitor panobinostat (LBH589). Cancer 2020; 126( 9): 2024– 2033
https://doi.org/10.1002/cncr.32744
pmid: 31999837
|
60 |
F Cao, YB Gong, XH Kang, ZH Lu, Y Wang, KL Zhao, ZH Miao, MJ Liao, ZY Xu. Degradation of MCL-1 by bufalin reverses acquired resistance to osimertinib in EGFR-mutant lung cancer. Toxicol Appl Pharmacol 2019; 379 : 114662
https://doi.org/10.1016/j.taap.2019.114662
pmid: 31301315
|
61 |
H Zang, G Qian, J Arbiser, TK Owonikoko, SS Ramalingam, S Fan, SY Sun. Overcoming acquired resistance of EGFR-mutant NSCLC cells to the third generation EGFR inhibitor, osimertinib, with the natural product honokiol. Mol Oncol 2020; 14( 4): 882– 895
https://doi.org/10.1002/1878-0261.12645
pmid: 32003107
|
62 |
Z Chen, KA Vallega, H Chen, J Zhou, SS Ramalingam, SY Sun. The natural product berberine synergizes with osimertinib preferentially against MET-amplified osimertinib-resistant lung cancer via direct MET inhibition. Pharmacol Res 2022; 175 : 105998
https://doi.org/10.1016/j.phrs.2021.105998
pmid: 34826601
|
63 |
R Han, S Hao, C Lu, C Zhang, C Lin, L Li, Y Wang, C Hu, Y He. Aspirin sensitizes osimertinib-resistant NSCLC cells in vitro and in vivo via Bim-dependent apoptosis induction. Mol Oncol 2020; 14( 6): 1152– 1169
https://doi.org/10.1002/1878-0261.12682
pmid: 32239624
|
64 |
Z Chen, D Yu, TK Owonikoko, SS Ramalingam, SY Sun. Induction of SREBP1 degradation coupled with suppression of SREBP1-mediated lipogenesis impacts the response of EGFR mutant NSCLC cells to osimertinib. Oncogene 2021; 40( 49): 6653– 6665
https://doi.org/10.1038/s41388-021-02057-0
pmid: 34635799
|
65 |
L Zhu, Z Chen, H Zang, S Fan, J Gu, G Zhang, KD Sun, Q Wang, Y He, TK Owonikoko, SS Ramalingam, SY Sun. Targeting c-Myc to overcome acquired resistance of EGFR mutant NSCLC cells to the third-generation EGFR tyrosine kinase inhibitor, osimertinib. Cancer Res 2021; 81( 18): 4822– 4834
https://doi.org/10.1158/0008-5472.CAN-21-0556
pmid: 34289988
|
66 |
K Tanaka, HA Yu, S Yang, S Han, SD Selcuklu, K Kim, S Ramani, YT Ganesan, A Moyer, S Sinha, Y Xie, K Ishizawa, HU Osmanbeyoglu, Y Lyu, N Roper, U Guha, CM Rudin, MG Kris, JJ Hsieh, EH Cheng. Targeting Aurora B kinase prevents and overcomes resistance to EGFR inhibitors in lung cancer by enhancing BIM- and PUMA-mediated apoptosis. Cancer Cell 2021; 39( 9): 1245– 1261.e6
https://doi.org/10.1016/j.ccell.2021.07.006
pmid: 34388376
|
67 |
S Watanabe, T Yoshida, H Kawakami, N Takegawa, J Tanizaki, H Hayashi, M Takeda, K Yonesaka, J Tsurutani, K Nakagawa. T790M-selective EGFR-TKI combined with dasatinib as an optimal strategy for overcoming EGFR-TKI resistance in T790M-positive non-small cell lung cancer. Mol Cancer Ther 2017; 16( 11): 2563– 2571
https://doi.org/10.1158/1535-7163.MCT-17-0351
pmid: 28839001
|
68 |
G Ma, Y Deng, L Qian, KA Vallega, G Zhang, X Deng, TK Owonikoko, SS Ramalingam, DD Fang, Y Zhai, SY Sun. Overcoming acquired resistance to third-generation EGFR inhibitors by targeting activation of intrinsic apoptotic pathway through Mcl-1 inhibition, Bax activation, or both. Oncogene 2022; 41( 12): 1691– 1700
https://doi.org/10.1038/s41388-022-02200-5
pmid: 35102249
|
69 |
Y Lu, D Bian, X Zhang, H Zhang, Z Zhu. Inhibition of Bcl-2 and Bcl-xL overcomes the resistance to the third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer. Mol Med Rep 2021; 23( 1): 48
https://doi.org/10.3892/mmr.2020.11686
pmid: 33200796
|
70 |
Z Liu, W Gao. Synergistic effects of Bcl-2 inhibitors with AZD9291 on overcoming the acquired resistance of AZD9291 in H1975 cells. Arch Toxicol 2020; 94( 9): 3125– 3136
https://doi.org/10.1007/s00204-020-02816-0
pmid: 32577785
|
71 |
K Suda, T Mitsudomi. Drug tolerance to EGFR tyrosine kinase inhibitors in lung cancers with EGFR mutations. Cells 2021; 10( 7): 1590
https://doi.org/10.3390/cells10071590
pmid: 34202566
|
72 |
HF Cabanos, AN Hata. Emerging insights into targeted therapy-tolerant persister cells in cancer. Cancers (Basel) 2021; 13( 11): 2666
https://doi.org/10.3390/cancers13112666
pmid: 34071428
|
73 |
SV Sharma, DY Lee, B Li, MP Quinlan, F Takahashi, S Maheswaran, U McDermott, N Azizian, L Zou, MA Fischbach, KK Wong, K Brandstetter, B Wittner, S Ramaswamy, M Classon, J Settleman. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010; 141( 1): 69– 80
https://doi.org/10.1016/j.cell.2010.02.027
pmid: 20371346
|
74 |
AN Hata, MJ Niederst, HL Archibald, M Gomez-Caraballo, FM Siddiqui, HE Mulvey, YE Maruvka, F Ji, HE Bhang, V Krishnamurthy Radhakrishna, G Siravegna, H Hu, S Raoof, E Lockerman, A Kalsy, D Lee, CL Keating, DA Ruddy, LJ Damon, AS Crystal, C Costa, Z Piotrowska, A Bardelli, AJ Iafrate, RI Sadreyev, F Stegmeier, G Getz, LV Sequist, AC Faber, JA Engelman. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med 2016; 22( 3): 262– 269
https://doi.org/10.1038/nm.4040
pmid: 26828195
|
75 |
KJ Kurppa, Y Liu, C To, T Zhang, M Fan, A Vajdi, EH Knelson, Y Xie, K Lim, P Cejas, A Portell, PH Lizotte, SB Ficarro, S Li, T Chen, HM Haikala, H Wang, M Bahcall, Y Gao, S Shalhout, S Boettcher, BH Shin, T Thai, MK Wilkens, ML Tillgren, M Mushajiang, M Xu, J Choi, AA Bertram, BL Ebert, R Beroukhim, P Bandopadhayay, MM Awad, PC Gokhale, PT Kirschmeier, JA Marto, FD Camargo, R Haq, CP Paweletz, KK Wong, DA Barbie, HW Long, NS Gray, PA Jänne. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 2020; 37( 1): 104– 122.e12
https://doi.org/10.1016/j.ccell.2019.12.006
pmid: 31935369
|
76 |
J Gu, W Yang, P Shi, G Zhang, TK Owonikoko, SR Ramalingam, SY Sun. MEK or ERK inhibition effectively abrogates emergence of acquired osimertinib resistance in the treatment of epidermal growth factor receptor-mutant lung cancers. Cancer 2020; 126 : 3788– 3799
https://doi.org/10.1002/cncr.32996
pmid: 32497272
|
77 |
TG Cotter. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 2009; 9( 7): 501– 507
https://doi.org/10.1038/nrc2663
pmid: 19550425
|
78 |
SW Fesik. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005; 5( 11): 876– 885
https://doi.org/10.1038/nrc1736
pmid: 16239906
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|