Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (2) : 275-291    https://doi.org/10.1007/s11684-020-0779-4
RESEARCH ARTICLE
Comprehensive functional annotation of susceptibility variants identifies genetic heterogeneity between lung adenocarcinoma and squamous cell carcinoma
Na Qin1, Yuancheng Li1, Cheng Wang1,2,3, Meng Zhu1,4, Juncheng Dai1,2,4,5, Tongtong Hong1, Demetrius Albanes6, Stephen Lam7, Adonina Tardon8, Chu Chen9, Gary Goodman10, Stig E. Bojesen11, Maria Teresa Landi12, Mattias Johansson13, Angela Risch14, H-Erich Wichmann15, Heike Bickeboller16, Gadi Rennert17, Susanne Arnold18, Paul Brennan13, John K. Field19, Sanjay Shete20, Loic Le Marchand21, Olle Melander22, Hans Brunnstrom22, Geoffrey Liu23, Rayjean J. Hung24, Angeline Andrew25, Lambertus A. Kiemeney26, Shan Zienolddiny27, Kjell Grankvist28, Mikael Johansson29, Neil Caporaso30, Penella Woll31, Philip Lazarus32, Matthew B. Schabath33, Melinda C. Aldrich34, Victoria L. Stevens35, Guangfu Jin1,2,4,5, David C. Christiani5,36, Zhibin Hu1,2,5, Christopher I. Amos37, Hongxia Ma1,2,4,5(), Hongbing Shen1,2,4,5()
1. Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
2. State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
3. Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
4. Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
5. China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
6. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892-9304, USA
7. Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
8. Faculty of Medicine, University of Oviedo and CIBERESP, Oviedo 33006, Spain
9. Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
10. Public Health Sciences Division, Swedish Cancer Institute, Seattle, WA 98026, USA
11. Department of Clinical Biochemistry, Copenhagen University Hospital, Copenhagen DK-1017, Denmark
12. National Cancer Institute, Bethesda, MD 20892-9304, USA
13. Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon 69372, France
14. Cancer Center Cluster Salzburg at PLUS, Department of Molecular Biology, University of Salzburg, Heidelberg 5020, Austria
15. Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig Maximilians University, Munich, Bavaria 80539, Germany
16. Department of Genetic Epidemiology, University Medical Center Goettingen, Goettingen 37075, Germany
17. Technion Faculty of Medicine, Carmel Medical Center, Haifa 3448516, Israel
18. Markey Cancer Center, University of Kentucky, Lexington, KY 40506-0054, USA
19. Department of Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research Programme, The University of Liverpool Institute of Translational Medicine, Liverpool L69 7ZX, UK
20. Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77079, USA
21. Department of Epidemiology, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
22. Department of Clinical Sciences, Lund University, BMC F12, 221 84, Sweden
23. Epidemiology Division, Princess Margaret Cancer Center, Toronto, ON M4Y 2H8, Canada
24. Epidemiology Division, Lunenfeld-Tanenbuaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
25. Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
26. Department of Health Evidence, Radboud University Medical Center, Nijmegen 9101 6500 HB, Germany
27. National Institute of Occupational Health (STAMI), Oslo Pb 5330, Norway
28. Department of Medical Biosciences, Umeå University, Umea 901 87, Sweden
29. Department of Radiation Sciences, Umeå University, Umea 901 87, Sweden
30. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
31. Academic Unit of Clinical Oncology, University of Sheffield, Sheffield S10 2TN, UK
32. College of Pharmacy, Washington State University, Spokane, WA 99210, USA
33. Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 12902, USA
34. Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
35. Department of Epidemiology Research Program, American Cancer Society, Atlanta, GA 30303, USA
36. Department of Environmental Health, Harvard School of Public Health, Department of Medicine, Harvard Medical School/Massachusetts General Hospital, Boston, MA 02115, USA
37. Baylor College of Medicine, Institute for Clinical and Translational Research, Houston, TX 21202, USA
 Download: PDF(1761 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Although genome-wide association studies have identified more than eighty genetic variants associated with non-small cell lung cancer (NSCLC) risk, biological mechanisms of these variants remain largely unknown. By integrating a large-scale genotype data of 15 581 lung adenocarcinoma (AD) cases, 8350 squamous cell carcinoma (SqCC) cases, and 27 355 controls, as well as multiple transcriptome and epigenomic databases, we conducted histology-specific meta-analyses and functional annotations of both reported and novel susceptibility variants. We identified 3064 credible risk variants for NSCLC, which were overrepresented in enhancer-like and promoter-like histone modification peaks as well as DNase I hypersensitive sites. Transcription factor enrichment analysis revealed that USF1 was AD-specific while CREB1 was SqCC-specific. Functional annotation and gene-based analysis implicated 894 target genes, including 274 specifics for AD and 123 for SqCC, which were overrepresented in somatic driver genes (ER=1.95, P=0.005). Pathway enrichment analysis and Gene-Set Enrichment Analysis revealed that AD genes were primarily involved in immune-related pathways, while SqCC genes were homologous recombination deficiency related. Our results illustrate the molecular basis of both well-studied and new susceptibility loci of NSCLC, providing not only novel insights into the genetic heterogeneity between AD and SqCC but also a set of plausible gene targets for post-GWAS functional experiments.

Keywords lung cancer      genome-wide association study      function annotation      immune      homologous recombination repair deficiency      genetic heterogeneity     
Corresponding Author(s): Hongxia Ma,Hongbing Shen   
Just Accepted Date: 24 July 2020   Online First Date: 09 September 2020    Issue Date: 23 April 2021
 Cite this article:   
Na Qin,Yuancheng Li,Cheng Wang, et al. Comprehensive functional annotation of susceptibility variants identifies genetic heterogeneity between lung adenocarcinoma and squamous cell carcinoma[J]. Front. Med., 2021, 15(2): 275-291.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0779-4
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I2/275
NJMU project
????Lung AD ????Lung SqCC ????Control
Number % Number % Number %
Total 8762 100.0 3860 100.0 13 328 100.0
Age (mean±S.D.) 58.63±10.52 61.16±9.42 59.31±10.42
Gender
?Male 4650 53.1 3470 89.9 8605 64.6
?Female 4112 46.9 390 10.1 4723 35.4
Missing value n/a n/a n/a n/a n/a n/a
Smoking status
?Ever smoker 3364 38.4 3172 82.2 5606 42.1
?Life-long non-smoker 5397 61.6 688 17.8 7720 57.9
Missing value 1 0.0 n/a n/a 2 0.0
TRICL-ILCCO OncoArray project
???Lung AD ???Lung SqCC ????Control
Number % Number % Number %
Total 6819 100.0 4490 100.0 14 027 100.0
Age (mean±S.D.) 63.57±10.80 64.84±9.62 61.77±10.29
Gender
?Male 3626 53.2 3489 77.7 8638 61.6
?Female 3192 46.8 1001 22.3 5386 38.4
Missing value 1 0.0 n/a n/a 3 0.0
Smoking status
?Ever smoker 5771 84.6 4276 95.2 9339 66.6
?Life-long non-smoker 974 14.3 156 3.5 4412 31.5
Missing value 74 1.1 58 1.3 276 1.9
Tab.1  Demographic characteristics of lung AD, SqCC, and non-cancer controls included in this study
Fig.1  Functional evaluation of 3064 lung cancer related credible risk variants (CRVs) defined in this study. (A) Flowchart for the study design. (B) Genomic distribution of 3064 lung cancer CRVs. The x-axis indicates the number of CRVs included in the genomic region type. (C) Enrichment of defined lung cancer CRVs (1020 for lung AD and 220 for SqCC) in histone modification peaks and DNase I hypersensitive sites. The x-axis indicates different types of modification peaks in lung cancer cell line types. A549, lung AD cell line; NHLF, lung fibroblasts cell line; AG04450 and HPF, lung fibroblasts cell lines; Lung, normal lung tissue. (D) Enrichment of defined lung cancer CRVs (1020 for lung AD and 220 for SqCC) in transcriptional factor binding sites. The x-axis indicates binding sites of different transcriptional factors. IMR90, lung fibroblasts cell line.
Fig.2  Implicated lung cancer target genes by functional annotation. (A) Circos plot showing 803 implicated genes by distal mapping, promoter mapping and coding mapping strategies. Blue indicates the mapping strategy (from inside to outside: distal, promoter, and coding mapping) and red indicates if the implicated gene is a driver gene. (B) Venn diagram showing the number of overlapped genes implicated by distal mapping, promoter mapping, coding mapping strategies, and GWGAS. (C) Detailed functional annotation results for three risk loci of lung cancer. The x-axis indicates the implicated genes, and y-axis indicates the annotation evidence types. (D) Genomic region of CASP8 in 2q33.1. (E and F) eQTL analysis of two CRVs (rs3769821 and rs3769823) and CASP8 expression in 383 GTEx lung tissues.
Fig.3  Implicated lung cancer target genes by gene-based and pathway enrichment analyses. (A) Manhattan plot of the GWGAS analysis for NSCLC meta-analysis. The y-axis shows the –log10 transformed two-tailed P value of each gene from a linear model, and chromosomal position is shown on the x-axis. (B) Venn diagram showing the overlap of genes implicated by INQUISIT and MAGMA in NSCLC, lung AD and SqCC. (C) Pathway enrichment analysis of all genes implicated by INQUISIT and GMAMA for NSCLC. (D) Pathway enrichment analysis of lung AD genes. (E) Pathway enrichment analysis of lung SqCC genes. (F) GSEA analysis of NSCLC, lung AD and SqCC genes with homologous recombination deficiency. (G) GSEA analysis of NSCLC, lung AD and SqCC genes with B cell proportion. (H) GSEA analysis of NSCLC, lung AD and SqCC genes with CD4 T cell proportion. (I) GSEA analysis of NSCLC, lung AD and SqCC genes with CD8 T cell proportion. (J) GSEA analysis of NSCLC, lung AD and SqCC genes with dendritic cell proportion.
1 F Bray, J Ferlay, I Soerjomataram, RL Siegel, LA Torre, A Jemal. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394–424
https://doi.org/10.3322/caac.21492
2 AJ Alberg, MV Brock, JG Ford, JM Samet, SD Spivack. Epidemiology of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013; 143(5 Suppl): e1S–e29S
3 Y Bossé, CI Amos. A decade of GWAS results in lung cancer. Cancer Epidemiol Biomarkers Prev 2018; 27(4): 363–379
https://doi.org/10.1158/1055-9965.EPI-16-0794
4 J Dai, J Lv, M Zhu, Y Wang, N Qin, H Ma, YQ He, R Zhang, W Tan, J Fan, T Wang, H Zheng, Q Sun, L Wang, M Huang, Z Ge, C Yu, Y Guo, TM Wang, J Wang, L Xu, W Wu, L Chen, Z Bian, R Walters, IY Millwood, XZ Li, X Wang, RJ Hung, DC Christiani, H Chen, M Wang, C Wang, Y Jiang, K Chen, Z Chen, G Jin, T Wu, D Lin, Z Hu, CI Amos, C Wu, Q Wei, WH Jia, L Li, H Shen. Identification of risk loci and a polygenic risk score for lung cancer: a large-scale prospective cohort study in Chinese populations. Lancet Respir Med 2019; 7(10): 881–891
https://doi.org/10.1016/S2213-2600(19)30144-4
5 J Dai, W Shen, W Wen, J Chang, T Wang, H Chen, G Jin, H Ma, C Wu, L Li, F Song, Y Zeng, Y Jiang, J Chen, C Wang, M Zhu, W Zhou, J Du, Y Xiang, XO Shu, Z Hu, W Zhou, K Chen, J Xu, W Jia, D Lin, W Zheng, H Shen. Estimation of heritability for nine common cancers using data from genome-wide association studies in Chinese population. Int J Cancer 2017; 140(2): 329–336
https://doi.org/10.1002/ijc.30447
6 JN Sampson, WA Wheeler, M Yeager, O Panagiotou, Z Wang, SI Berndt, Q Lan, CC Abnet, LT Amundadottir, JD Figueroa, MT Landi, L Mirabello, SA Savage, PR Taylor, I De Vivo, KA McGlynn, MP Purdue, P Rajaraman, HO Adami, A Ahlbom, D Albanes, MF Amary, SJ An, U Andersson, G Andriole Jr, IL Andrulis, E Angelucci, SM Ansell, C Arici, BK Armstrong, AA Arslan, MA Austin, D Baris, DA Barkauskas, BA Bassig, N Becker, Y Benavente, S Benhamou, C Berg, D Van Den Berg, L Bernstein, KA Bertrand, BM Birmann, A Black, H Boeing, P Boffetta, MC Boutron-Ruault, PM Bracci, L Brinton, AR Brooks-Wilson, HB Bueno-de-Mesquita, L Burdett, J Buring, MA Butler, Q Cai, G Cancel-Tassin, F Canzian, A Carrato, T Carreon, A Carta, JK Chan, ET Chang, GC Chang, IS Chang, J Chang, J Chang-Claude, CJ Chen, CY Chen, C Chen, CH Chen, C Chen, H Chen, K Chen, KY Chen, KC Chen, Y Chen, YH Chen, YS Chen, YM Chen, LH Chien, MD Chirlaque, JE Choi, YY Choi, WH Chow, CC Chung, J Clavel, F Clavel-Chapelon, P Cocco, JS Colt, E Comperat, L Conde, JM Connors, D Conti, VK Cortessis, M Cotterchio, W Cozen, S Crouch, M Crous-Bou, O Cussenot, FG Davis, T Ding, WR Diver, M Dorronsoro, L Dossus, EJ Duell, MG Ennas, RL Erickson, M Feychting, AM Flanagan, L Foretova, JF Fraumeni Jr, ND Freedman, LE Beane Freeman, C Fuchs, M Gago-Dominguez, S Gallinger, YT Gao, SM Gapstur, M Garcia-Closas, R Garcia-Closas, RD Gascoyne, J Gastier-Foster, MM Gaudet, JM Gaziano, C Giffen, GG Giles, E Giovannucci, B Glimelius, M Goggins, N Gokgoz, AM Goldstein, R Gorlick, M Gross, R Grubb 3rd, J Gu, P Guan, M Gunter, H Guo, TM Habermann, CA Haiman, D Halai, G Hallmans, M Hassan, C Hattinger, Q He, X He, K Helzlsouer, B Henderson, R Henriksson, H Hjalgrim, J Hoffman-Bolton, C Hohensee, TR Holford, EA Holly, YC Hong, RN Hoover, PL Horn-Ross, GM Hosain, HD Hosgood 3rd, CF Hsiao, N Hu, W Hu, Z Hu, MS Huang, JM Huerta, JY Hung, A Hutchinson, PD Inskip, RD Jackson, EJ Jacobs, M Jenab, HS Jeon, BT Ji, G Jin, L Jin, C Johansen, A Johnson, YJ Jung, R Kaaks, A Kamineni, E Kane, CH Kang, MR Karagas, RS Kelly, KT Khaw, C Kim, HN Kim, JH Kim, JS Kim, YH Kim, YT Kim, YC Kim, CM Kitahara, AP Klein, RJ Klein, M Kogevinas, T Kohno, LN Kolonel, C Kooperberg, A Kricker, V Krogh, H Kunitoh, RC Kurtz, SS Kweon, A LaCroix, C Lawrence, F Lecanda, VH Lee, D Li, H Li, J Li, YJ Li, Y Li, LM Liao, M Liebow, T Lightfoot, WY Lim, CC Lin, D Lin, S Lindstrom, MS Linet, BK Link, C Liu, J Liu, L Liu, B Ljungberg, J Lloreta, S Di Lollo, D Lu, E Lund, N Malats, S Mannisto, L Le Marchand, N Marina, G Masala, G Mastrangelo, K Matsuo, M Maynadie, J McKay, R McKean-Cowdin, M Melbye, BS Melin, DS Michaud, T Mitsudomi, A Monnereau, R Montalvan, LE Moore, LM Mortensen, A Nieters, KE North, AJ Novak, AL Oberg, K Offit, IJ Oh, SH Olson, D Palli, W Pao, IK Park, JY Park, KH Park, A Patino-Garcia, S Pavanello, PH Peeters, RP Perng, U Peters, GM Petersen, P Picci, MC Pike, S Porru, J Prescott, L Prokunina-Olsson, B Qian, YL Qiao, M Rais, E Riboli, J Riby, HA Risch, C Rizzato, R Rodabough, E Roman, M Roupret, AM Ruder, S Sanjose, G Scelo, A Schned, F Schumacher, K Schwartz, M Schwenn, K Scotlandi, A Seow, C Serra, M Serra, HD Sesso, VW Setiawan, G Severi, RK Severson, TD Shanafelt, H Shen, W Shen, MH Shin, K Shiraishi, XO Shu, A Siddiq, L Sierrasesumaga, AD Sihoe, CF Skibola, A Smith, MT Smith, MC Southey, JJ Spinelli, A Staines, M Stampfer, MC Stern, VL Stevens, RS Stolzenberg-Solomon, J Su, WC Su, M Sund, JS Sung, SW Sung, W Tan, W Tang, A Tardon, D Thomas, CA Thompson, LF Tinker, R Tirabosco, A Tjonneland, RC Travis, D Trichopoulos, FY Tsai, YH Tsai, M Tucker, J Turner, CM Vajdic, RC Vermeulen, DJ Villano, P Vineis, J Virtamo, K Visvanathan, J Wactawski-Wende, C Wang, CL Wang, JC Wang, J Wang, F Wei, E Weiderpass, GJ Weiner, S Weinstein, N Wentzensen, E White, TE Witzig, BM Wolpin, MP Wong, C Wu, G Wu, J Wu, T Wu, W Wu, X Wu, YL Wu, JS Wunder, YB Xiang, J Xu, P Xu, PC Yang, TY Yang, Y Ye, Z Yin, J Yokota, HI Yoon, CJ Yu, H Yu, K Yu, JM Yuan, A Zelenetz, A Zeleniuch-Jacquotte, XC Zhang, Y Zhang, X Zhao, Z Zhao, H Zheng, T Zheng, W Zheng, B Zhou, M Zhu, M Zucca, SM Boca, JR Cerhan, GM Ferri, P Hartge, CA Hsiung, C Magnani, L Miligi, LM Morton, KE Smedby, LR Teras, J Vijai, SS Wang, P Brennan, NE Caporaso, DJ Hunter, P Kraft, N Rothman, DT Silverman, SL Slager, SJ Chanock, N Chatterjee. Analysis of heritability and shared heritability based on genome-wide association studies for thirteen cancer types. J Natl Cancer Inst 2015; 107(12): djv279
https://doi.org/10.1093/jnci/djv279
7 ML Freedman, AN Monteiro, SA Gayther, GA Coetzee, A Risch, C Plass, G Casey, M De Biasi, C Carlson, D Duggan, M James, P Liu, JW Tichelaar, HG Vikis, M You, IG Mills. Principles for the post-GWAS functional characterization of cancer risk loci. Nat Genet 2011; 43(6): 513–518
https://doi.org/10.1038/ng.840
8 LA Hindorff, P Sethupathy, HA Junkins, EM Ramos, JP Mehta, FS Collins, TA Manolio. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 2009; 106(23): 9362–9367
https://doi.org/10.1073/pnas.0903103106
9 LA Garraway, WR Sellers. Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer 2006; 6(8): 593–602
https://doi.org/10.1038/nrc1947
10 M Sato, DS Shames, AF Gazdar, JD Minna. A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol 2007; 2(4): 327–343
https://doi.org/10.1097/01.JTO.0000263718.69320.4c
11 H Shen, M Zhu, C Wang. Precision oncology of lung cancer: genetic and genomic differences in Chinese population. NPJ Precis Oncol 2019; 3(1): 14
https://doi.org/10.1038/s41698-019-0086-1
12 The ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 2004; 306(5696): 636–640
https://doi.org/10.1126/science.1105136
13 R Andersson, C Gebhard, I Miguel-Escalada, I Hoof, J Bornholdt, M Boyd, Y Chen, X Zhao, C Schmidl, T Suzuki, E Ntini, E Arner, E Valen, K Li, L Schwarzfischer, D Glatz, J Raithel, B Lilje, N Rapin, FO Bagger, M Jorgensen, PR Andersen, N Bertin, O Rackham, AM Burroughs, JK Baillie, Y Ishizu, Y Shimizu, E Furuhata, S Maeda, Y Negishi, CJ Mungall, TF Meehan, T Lassmann, M Itoh, H Kawaji, N Kondo, J Kawai, A Lennartsson, CO Daub, P Heutink, DA Hume, TH Jensen, H Suzuki, Y Hayashizaki, F Muller, ARR Forrest, P Carninci, M Rehli, A Sandelin. An atlas of active enhancers across human cell types and tissues. Nature 2014; 507(7493): 455–461
https://doi.org/10.1038/nature12787
14 C Roadmap Epigenomics, A Kundaje, W Meuleman, J Ernst, M Bilenky, A Yen, A Heravi-Moussavi, P Kheradpour, Z Zhang, J Wang, MJ Ziller, V Amin, JW Whitaker, MD Schultz, LD Ward, A Sarkar, G Quon, RS Sandstrom, ML Eaton, YC Wu, AR Pfenning, X Wang, M Claussnitzer, Y Liu, C Coarfa, RA Harris, N Shoresh, CB Epstein, E Gjoneska, D Leung, W Xie, RD Hawkins, R Lister, C Hong, P Gascard, AJ Mungall, R Moore, E Chuah, A Tam, TK Canfield, RS Hansen, R Kaul, PJ Sabo, MS Bansal, A Carles, JR Dixon, KH Farh, S Feizi, R Karlic, AR Kim, A Kulkarni, D Li, R Lowdon, G Elliott, TR Mercer, SJ Neph, V Onuchic, P Polak, N Rajagopal, P Ray, RC Sallari, KT Siebenthall, NA Sinnott-Armstrong, M Stevens, RE Thurman, J Wu, B Zhang, X Zhou, AE Beaudet, LA Boyer, PL De Jager, PJ Farnham, SJ Fisher, D Haussler, SJ Jones, W Li, MA Marra, MT McManus, S Sunyaev, JA Thomson, TD Tlsty, LH Tsai, W Wang, RA Waterland, MQ Zhang, LH Chadwick, BE Bernstein, JF Costello, JR Ecker, M Hirst, A Meissner, A Milosavljevic, B Ren, JA Stamatoyannopoulos, T Wang, M Kellis. Integrative analysis of 111 reference human epigenomes. Nature 2015; 518(7539): 317–330
https://doi.org/10.1038/nature14248
15 K Michailidou, S Lindstrom, J Dennis, J Beesley, S Hui, S Kar, A Lemacon, P Soucy, D Glubb, A Rostamianfar, MK Bolla, Q Wang, J Tyrer, E Dicks, A Lee, Z Wang, J Allen, R Keeman, U Eilber, JD French, X Qing Chen, L Fachal, K McCue, AE McCart Reed, M Ghoussaini, JS Carroll, X Jiang, H Finucane, M Adams, MA Adank, H Ahsan, K Aittomaki, H Anton-Culver, NN Antonenkova, V Arndt, KJ Aronson, B Arun, PL Auer, F Bacot, M Barrdahl, C Baynes, MW Beckmann, S Behrens, J Benitez, M Bermisheva, L Bernstein, C Blomqvist, NV Bogdanova, SE Bojesen, B Bonanni, AL Borresen-Dale, JS Brand, H Brauch, P Brennan, H Brenner, L Brinton, P Broberg, IW Brock, A Broeks, A Brooks-Wilson, SY Brucker, T Bruning, B Burwinkel, K Butterbach, Q Cai, H Cai, T Caldes, F Canzian, A Carracedo, BD Carter, JE Castelao, TL Chan, TY David Cheng, K Seng Chia, JY Choi, H Christiansen, CL Clarke, N Collaborators, M Collee, DM Conroy, E Cordina-Duverger, S Cornelissen, DG Cox, A Cox, SS Cross, JM Cunningham, K Czene, MB Daly, P Devilee, KF Doheny, T Dork, I Dos-Santos-Silva, M Dumont, L Durcan, M Dwek, DM Eccles, AB Ekici, AH Eliassen, C Ellberg, M Elvira, C Engel, M Eriksson, PA Fasching, J Figueroa, D Flesch-Janys, O Fletcher, H Flyger, L Fritschi, V Gaborieau, M Gabrielson, M Gago-Dominguez, YT Gao, SM Gapstur, JA Garcia-Saenz, MM Gaudet, V Georgoulias, GG Giles, G Glendon, MS Goldberg, DE Goldgar, A Gonzalez-Neira, GI Grenaker Alnaes, M Grip, J Gronwald, A Grundy, P Guenel, L Haeberle, E Hahnen, CA Haiman, N Hakansson, U Hamann, N Hamel, S Hankinson, P Harrington, SN Hart, JM Hartikainen, M Hartman, A Hein, J Heyworth, B Hicks, P Hillemanns, DN Ho, A Hollestelle, MJ Hooning, RN Hoover, JL Hopper, MF Hou, CN Hsiung, G Huang, K Humphreys, J Ishiguro, H Ito, M Iwasaki, H Iwata, A Jakubowska, W Janni, EM John, N Johnson, K Jones, M Jones, A Jukkola-Vuorinen, R Kaaks, M Kabisch, K Kaczmarek, D Kang, Y Kasuga, MJ Kerin, S Khan, E Khusnutdinova, JI Kiiski, SW Kim, JA Knight, VM Kosma, VN Kristensen, U Kruger, A Kwong, D Lambrechts, L Le Marchand, E Lee, MH Lee, JW Lee, C Neng Lee, F Lejbkowicz, J Li, J Lilyquist, A Lindblom, J Lissowska, WY Lo, S Loibl, J Long, A Lophatananon, J Lubinski, C Luccarini, MP Lux, ESK Ma, RJ MacInnis, T Maishman, E Makalic, KE Malone, IM Kostovska, A Mannermaa, S Manoukian, JE Manson, S Margolin, S Mariapun, ME Martinez, K Matsuo, D Mavroudis, J McKay, C McLean, H Meijers-Heijboer, A Meindl, P Menendez, U Menon, J Meyer, H Miao, N Miller, NAM Taib, K Muir, AM Mulligan, C Mulot, SL Neuhausen, H Nevanlinna, P Neven, SF Nielsen, DY Noh, BG Nordestgaard, A Norman, OI Olopade, JE Olson, H Olsson, C Olswold, N Orr, VS Pankratz, SK Park, TW Park-Simon, R Lloyd, JIA Perez, P Peterlongo, J Peto, KA Phillips, M Pinchev, D Plaseska-Karanfilska, R Prentice, N Presneau, D Prokofyeva, E Pugh, K Pylkas, B Rack, P Radice, N Rahman, G Rennert, HS Rennert, V Rhenius, A Romero, J Romm, KJ Ruddy, T Rudiger, A Rudolph, M Ruebner, EJT Rutgers, E Saloustros, DP Sandler, S Sangrajrang, EJ Sawyer, DF Schmidt, RK Schmutzler, A Schneeweiss, MJ Schoemaker, F Schumacher, P Schurmann, RJ Scott, C Scott, S Seal, C Seynaeve, M Shah, P Sharma, CY Shen, G Sheng, ME Sherman, MJ Shrubsole, XO Shu, A Smeets, C Sohn, MC Southey, JJ Spinelli, C Stegmaier, S Stewart-Brown, J Stone, DO Stram, H Surowy, A Swerdlow, R Tamimi, JA Taylor, M Tengstrom, SH Teo, M Beth Terry, DC Tessier, S Thanasitthichai, K Thone, R Tollenaar, I Tomlinson, L Tong, D Torres, T Truong, CC Tseng, S Tsugane, HU Ulmer, G Ursin, M Untch, C Vachon, CJ van Asperen, D Van Den Berg, AMW van den Ouweland, L van der Kolk, RB van der Luijt, D Vincent, J Vollenweider, Q Waisfisz, S Wang-Gohrke, CR Weinberg, C Wendt, AS Whittemore, H Wildiers, W Willett, R Winqvist, A Wolk, AH Wu, L Xia, T Yamaji, XR Yang, C Har Yip, KY Yoo, JC Yu, W Zheng, Y Zheng, B Zhu, A Ziogas, E Ziv; ABCTB Investigators; ConFab/AOCS Investigators, Lakhani SR, Antoniou AC, Droit A, Andrulis IL, Amos CI, Couch FJ, Pharoah PDP, Chang-Claude J, Hall P, Hunter DJ, Milne RL, García-Closas M, Schmidt MK, Chanock SJ, Dunning AM, Edwards SL, Bader GD, Chenevix-Trench G, Simard J, Kraft P, Easton DF. Association analysis identifies 65 new breast cancer risk loci. Nature 2017; 551(7678): 92–94
https://doi.org/10.1038/nature24284
16 X Jiang, HK Finucane, FR Schumacher, SL Schmit, JP Tyrer, Y Han, K Michailidou, C Lesseur, KB Kuchenbaecker, J Dennis, DV Conti, G Casey, MM Gaudet, JR Huyghe, D Albanes, MC Aldrich, AS Andrew, IL Andrulis, H Anton-Culver, AC Antoniou, NN Antonenkova, SM Arnold, KJ Aronson, BK Arun, EV Bandera, RB Barkardottir, DR Barnes, J Batra, MW Beckmann, J Benitez, S Benlloch, A Berchuck, SI Berndt, H Bickeboller, SA Bien, C Blomqvist, S Boccia, NV Bogdanova, SE Bojesen, MK Bolla, H Brauch, H Brenner, JD Brenton, MN Brook, J Brunet, H Brunnstrom, DD Buchanan, B Burwinkel, R Butzow, G Cadoni, T Caldes, MA Caligo, I Campbell, PT Campbell, G Cancel-Tassin, L Cannon-Albright, D Campa, N Caporaso, AL Carvalho, AT Chan, J Chang-Claude, SJ Chanock, C Chen, DC Christiani, KBM Claes, F Claessens, J Clements, JM Collee, MC Correa, FJ Couch, A Cox, JM Cunningham, C Cybulski, K Czene, MB Daly, A deFazio, P Devilee, O Diez, M Gago-Dominguez, JL Donovan, T Dork, EJ Duell, AM Dunning, M Dwek, DM Eccles, CK Edlund, DRV Edwards, C Ellberg, DG Evans, PA Fasching, RL Ferris, T Liloglou, JC Figueiredo, O Fletcher, RT Fortner, F Fostira, S Franceschi, E Friedman, SJ Gallinger, PA Ganz, J Garber, JA Garcia-Saenz, SA Gayther, GG Giles, AK Godwin, MS Goldberg, DE Goldgar, EL Goode, MT Goodman, G Goodman, K Grankvist, MH Greene, H Gronberg, J Gronwald, P Guenel, N Hakansson, P Hall, U Hamann, FC Hamdy, RJ Hamilton, J Hampe, A Haugen, F Heitz, R Herrero, P Hillemanns, M Hoffmeister, E Hogdall, YC Hong, JL Hopper, R Houlston, PJ Hulick, DJ Hunter, DG Huntsman, G Idos, EN Imyanitov, SA Ingles, C Isaacs, A Jakubowska, P James, MA Jenkins, M Johansson, M Johansson, EM John, AD Joshi, R Kaneva, BY Karlan, LE Kelemen, T Kuhl, KT Khaw, E Khusnutdinova, AS Kibel, LA Kiemeney, J Kim, SK Kjaer, JA Knight, M Kogevinas, Z Kote-Jarai, S Koutros, VN Kristensen, J Kupryjanczyk, M Lacko, S Lam, D Lambrechts, MT Landi, P Lazarus, ND Le, E Lee, F Lejbkowicz, HJ Lenz, G Leslie, D Lessel, J Lester, DA Levine, L Li, CI Li, A Lindblom, NM Lindor, G Liu, F Loupakis, J Lubinski, L Maehle, C Maier, A Mannermaa, LL Marchand, S Margolin, T May, L McGuffog, A Meindl, P Middha, A Miller, RL Milne, RJ MacInnis, F Modugno, M Montagna, V Moreno, KB Moysich, L Mucci, K Muir, AM Mulligan, KL Nathanson, DE Neal, AR Ness, SL Neuhausen, H Nevanlinna, PA Newcomb, LF Newcomb, FC Nielsen, L Nikitina-Zake, BG Nordestgaard, RL Nussbaum, K Offit, E Olah, AAA Olama, OI Olopade, AF Olshan, H Olsson, A Osorio, H Pandha, JY Park, N Pashayan, MT Parsons, T Pejovic, KL Penney, WHM Peters, CM Phelan, AI Phipps, D Plaseska-Karanfilska, M Pring, D Prokofyeva, P Radice, K Stefansson, SJ Ramus, L Raskin, G Rennert, HS Rennert, EJ van Rensburg, MJ Riggan, HA Risch, A Risch, MJ Roobol, BS Rosenstein, MA Rossing, K De Ruyck, E Saloustros, DP Sandler, EJ Sawyer, MB Schabath, J Schleutker, MK Schmidt, VW Setiawan, H Shen, EM Siegel, W Sieh, CF Singer, ML Slattery, KD Sorensen, MC Southey, AB Spurdle, JL Stanford, VL Stevens, S Stintzing, J Stone, K Sundfeldt, R Sutphen, AJ Swerdlow, EH Tajara, CM Tangen, A Tardon, JA Taylor, MD Teare, MR Teixeira, MB Terry, KL Terry, SN Thibodeau, M Thomassen, L Bjorge, M Tischkowitz, AE Toland, D Torres, PA Townsend, RC Travis, N Tung, SS Tworoger, CM Ulrich, N Usmani, CM Vachon, E Van Nieuwenhuysen, A Vega, ME Aguado-Barrera, Q Wang, PM Webb, CR Weinberg, S Weinstein, MC Weissler, JN Weitzel, CML West, E White, AS Whittemore, HE Wichmann, F Wiklund, R Winqvist, A Wolk, P Woll, M Woods, AH Wu, X Wu, D Yannoukakos, W Zheng, S Zienolddiny, A Ziogas, KK Zorn, JM Lane, R Saxena, D Thomas, RJ Hung, B Diergaarde, J McKay, U Peters, L Hsu, M Garcia-Closas, RA Eeles, G Chenevix-Trench, PJ Brennan, CA Haiman, J Simard, DF Easton, SB Gruber, PDP Pharoah, AL Price, B Pasaniuc, CI Amos, P Kraft, S Lindström. Shared heritability and functional enrichment across six solid cancers. Nat Commun 2019; 10(1): 431
https://doi.org/10.1038/s41467-018-08054-4
17 KK Farh, A Marson, J Zhu, M Kleinewietfeld, WJ Housley, S Beik, N Shoresh, H Whitton, RJ Ryan, AA Shishkin, M Hatan, MJ Carrasco-Alfonso, D Mayer, CJ Luckey, NA Patsopoulos, PL De Jager, VK Kuchroo, CB Epstein, MJ Daly, DA Hafler, BE Bernstein. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 2015; 518(7539): 337–343
https://doi.org/10.1038/nature13835
18 JD McKay, RJ Hung, Y Han, X Zong, R Carreras-Torres, DC Christiani, NE Caporaso, M Johansson, X Xiao, Y Li, J Byun, A Dunning, KA Pooley, DC Qian, X Ji, G Liu, MN Timofeeva, SE Bojesen, X Wu, L Le Marchand, D Albanes, H Bickeboller, MC Aldrich, WS Bush, A Tardon, G Rennert, MD Teare, JK Field, LA Kiemeney, P Lazarus, A Haugen, S Lam, MB Schabath, AS Andrew, H Shen, YC Hong, JM Yuan, PA Bertazzi, AC Pesatori, Y Ye, N Diao, L Su, R Zhang, Y Brhane, N Leighl, JS Johansen, A Mellemgaard, W Saliba, CA Haiman, LR Wilkens, A Fernandez-Somoano, G Fernandez-Tardon, HFM van der Heijden, JH Kim, J Dai, Z Hu, MPA Davies, MW Marcus, H Brunnstrom, J Manjer, O Melander, DC Muller, K Overvad, A Trichopoulou, R Tumino, JA Doherty, MP Barnett, C Chen, GE Goodman, A Cox, F Taylor, P Woll, I Bruske, HE Wichmann, J Manz, TR Muley, A Risch, A Rosenberger, K Grankvist, M Johansson, FA Shepherd, MS Tsao, SM Arnold, EB Haura, C Bolca, I Holcatova, V Janout, M Kontic, J Lissowska, A Mukeria, S Ognjanovic, TM Orlowski, G Scelo, B Swiatkowska, D Zaridze, P Bakke, V Skaug, S Zienolddiny, EJ Duell, LM Butler, WP Koh, YT Gao, RS Houlston, J McLaughlin, VL Stevens, P Joubert, M Lamontagne, DC Nickle, M Obeidat, W Timens, B Zhu, L Song, L Kachuri, MS Artigas, MD Tobin, LV Wain; SpiroMeta Consortium, Rafnar T, Thorgeirsson TE, Reginsson GW, Stefansson K, Hancock DB, Bierut LJ, Spitz MR, Gaddis NC, Lutz SM, Gu F, Johnson EO, Kamal A, Pikielny C, Zhu D, Lindströem S, Jiang X, Tyndale RF, Chenevix-Trench G, Beesley J, Bossé Y, Chanock S, Brennan P, Landi MT, Amos CI. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet 2017; 49(7): 1126–1132
https://doi.org/10.1038/ng.3892
19 Z Hu, C Wu, Y Shi, H Guo, X Zhao, Z Yin, L Yang, J Dai, L Hu, W Tan, Z Li, Q Deng, J Wang, W Wu, G Jin, Y Jiang, D Yu, G Zhou, H Chen, P Guan, Y Chen, Y Shu, L Xu, X Liu, L Liu, P Xu, B Han, C Bai, Y Zhao, H Zhang, Y Yan, H Ma, J Chen, M Chu, F Lu, Z Zhang, F Chen, X Wang, L Jin, J Lu, B Zhou, D Lu, T Wu, D Lin, H Shen. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat Genet 2011; 43(8): 792–796
https://doi.org/10.1038/ng.875
20 O Delaneau, J Marchini, JF Zagury. A linear complexity phasing method for thousands of genomes. Nat Methods 2012; 9(2): 179–181
https://doi.org/10.1038/nmeth.1785
21 BN Howie, P Donnelly, J Marchini. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 2009; 5(6): e1000529
https://doi.org/10.1371/journal.pgen.1000529
22 O Corradin, A Saiakhova, B Akhtar-Zaidi, L Myeroff, J Willis, R Cowper-Sal·lari , M Lupien, S Markowitz, PC Scacheri. Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res 2014; 24(1): 1–13
https://doi.org/10.1101/gr.164079.113
23 C Wang, R Yin, J Dai, Y Gu, S Cui, H Ma, Z Zhang, J Huang, N Qin, T Jiang, L Geng, M Zhu, Z Pu, F Du, Y Wang, J Yang, L Chen, Q Wang, Y Jiang, L Dong, Y Yao, G Jin, Z Hu, L Jiang, L Xu, H Shen. Whole-genome sequencing reveals genomic signatures associated with the inflammatory microenvironments in Chinese NSCLC patients. Nat Commun 2018; 9(1): 2054
https://doi.org/10.1038/s41467-018-04492-2
24 M Kircher, DM Witten, P Jain, BJ O’Roak, GM Cooper, J Shendure. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014; 46(3): 310–315
https://doi.org/10.1038/ng.2892
25 HA Shihab, J Gough, DN Cooper, PD Stenson, GL Barker, KJ Edwards, IN Day, TR Gaunt. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 2013; 34(1): 57–65
https://doi.org/10.1002/humu.22225
26 S Chun, JC Fay. Identification of deleterious mutations within three human genomes. Genome Res 2009; 19(9): 1553–1561
https://doi.org/10.1101/gr.092619.109
27 JM Schwarz, C Rodelsperger, M Schuelke, D Seelow. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 2010; 7(8): 575–576
https://doi.org/10.1038/nmeth0810-575
28 IA Adzhubei, S Schmidt, L Peshkin, VE Ramensky, A Gerasimova, P Bork, AS Kondrashov, SR Sunyaev. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7(4): 248–249
https://doi.org/10.1038/nmeth0410-248
29 P Kumar, S Henikoff, PC Ng. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4(7): 1073–1081
https://doi.org/10.1038/nprot.2009.86
30 AA Shabalin. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 2012; 28(10): 1353–1358
https://doi.org/10.1093/bioinformatics/bts163
31 Cowper-Sal·lari R, Zhang X, Wright JB, Bailey SD, Cole MD, Eeckhoute J, Moore JH, Lupien M. Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. Nat Genet 2012; 44(11): 1191–1198
https://doi.org/10.1038/ng.2416
32 CA de Leeuw, JM Mooij, T Heskes, D Posthuma. MAGMA: generalized gene-set analysis of GWAS data. PLOS Comput Biol 2015; 11(4): e1004219
https://doi.org/10.1371/journal.pcbi.1004219
33 PA Futreal, L Coin, M Marshall, T Down, T Hubbard, R Wooster, N Rahman, MR Stratton. A census of human cancer genes. Nat Rev Cancer 2004; 4(3): 177–183
https://doi.org/10.1038/nrc1299
34 A Gonzalez-Perez, C Perez-Llamas, J Deu-Pons, D Tamborero, MP Schroeder, A Jene-Sanz, A Santos, N Lopez-Bigas. IntOGen-mutations identifies cancer drivers across tumor types. Nat Methods 2013; 10(11): 1081–1082
https://doi.org/10.1038/nmeth.2642
35 Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489(7417): 519–525
https://doi.org/10.1038/nature11404
36 Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511(7511): 543–550
https://doi.org/10.1038/nature13385
37 JD Campbell, A Alexandrov, J Kim, J Wala, AH Berger, CS Pedamallu, SA Shukla, G Guo, AN Brooks, BA Murray, M Imielinski, X Hu, S Ling, R Akbani, M Rosenberg, C Cibulskis, A Ramachandran, EA Collisson, DJ Kwiatkowski, MS Lawrence, JN Weinstein, RG Verhaak, CJ Wu, PS Hammerman, AD Cherniack, G Getz; Cancer Genome Atlas Research Network, Artyomov MN, Schreiber R, Govindan R, Meyerson M. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet 2016; 48(6): 607–616
https://doi.org/10.1038/ng.3564
38 XC Zhang, J Wang, GG Shao, Q Wang, X Qu, B Wang, C Moy, Y Fan, Z Albertyn, X Huang, J Zhang, Y Qiu, S Platero, MV Lorenzi, E Zudaire, J Yang, Y Cheng, L Xu, YL Wu. Comprehensive genomic and immunological characterization of Chinese non-small cell lung cancer patients. Nat Commun 2019; 10(1): 1772
https://doi.org/10.1038/s41467-019-09762-1
39 M Imielinski, AH Berger, PS Hammerman, B Hernandez, TJ Pugh, E Hodis, J Cho, J Suh, M Capelletti, A Sivachenko, C Sougnez, D Auclair, MS Lawrence, P Stojanov, K Cibulskis, K Choi, L de Waal, T Sharifnia, A Brooks, H Greulich, S Banerji, T Zander, D Seidel, F Leenders, S Ansen, C Ludwig, W Engel-Riedel, E Stoelben, J Wolf, C Goparju, K Thompson, W Winckler, D Kwiatkowski, BE Johnson, PA Janne, VA Miller, W Pao, WD Travis, HI Pass, SB Gabriel, ES Lander, RK Thomas, LA Garraway, G Getz, M Meyerson. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012; 150(6): 1107–1120
https://doi.org/10.1016/j.cell.2012.08.029
40 D Croft, G O’Kelly, G Wu, R Haw, M Gillespie, L Matthews, M Caudy, P Garapati, G Gopinath, B Jassal, S Jupe, I Kalatskaya, S Mahajan, B May, N Ndegwa, E Schmidt, V Shamovsky, C Yung, E Birney, H Hermjakob, P D’Eustachio, L Stein. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 2011; 39(Database issue): D691–D697
https://doi.org/10.1093/nar/gkq1018
41 G Yu, LG Wang, Y Han, QY He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284–287
https://doi.org/10.1089/omi.2011.0118
42 V Thorsson, DL Gibbs, SD Brown, D Wolf, DS Bortone, TH Ou Yang, E Porta-Pardo, GF Gao, CL Plaisier, JA Eddy, E Ziv, AC Culhane, EO Paull, IKA Sivakumar, AJ Gentles, R Malhotra, F, Farshidfar A Colaprico, JS Parker, LE Mose, NS Vo, J Liu, Y Liu, J Rader, V Dhankani, SM Reynolds, R Bowlby, A Califano, AD Cherniack, D Anastassiou, D, Bedognetti Y Mokrab, AM Newman, A Rao, K Chen, A Krasnitz, H Hu, TM Malta, H Noushmehr, CS Pedamallu, S Bullman, AI Ojesina, A Lamb, W Zhou, H Shen, TK Choueiri, JN Weinstein, J Guinney, J Saltz, RA Holt, CS Rabkin; Cancer Genome Atlas Research Network, Lazar AJ, Serody JS, Demicco EG, Disis ML, Vincent BG, Shmulevich I. The immune landscape of cancer. Immunity 2018; 48(4): 812–830.e14
https://doi.org/10.1016/j.immuni.2018.03.023
43 TA Knijnenburg, L Wang, MT Zimmermann, N Chambwe, GF Gao, AD Cherniack, H Fan, H Shen, GP Way, CS Greene, Y Liu, R Akbani, B Feng, LA Donehower, C Miller, Y Shen, M Karimi, H Chen, P Kim, P Jia, E, Shinbrot S Zhang, J, Liu H, Hu MH Bailey, C Yau, D Wolf, Z Zhao, JN Weinstein, L Li, L Ding, GB Mills, PW Laird, DA Wheeler, I Shmulevich; Cancer Genome Atlas Research Network, Monnat RJ Jr, Xiao Y, Wang C. Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas. Cell Rep 2018; 23(1): 239–254.e6
https://doi.org/10.1016/j.celrep.2018.03.076
44 CJ Willer, Y Li, GR Abecasis. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010; 26(17): 2190–2191
https://doi.org/10.1093/bioinformatics/btq340
45 JZ Liu, S van Sommeren, H Huang, SC Ng, R Alberts, A Takahashi, S Ripke, JC Lee, L Jostins, T Shah, S Abedian, JH Cheon, J Cho, NE Dayani, L Franke, Y Fuyuno, A Hart, RC Juyal, G Juyal, WH Kim, AP Morris, H Poustchi, WG Newman, V Midha, TR Orchard, H Vahedi, A Sood, JY Sung, R Malekzadeh, HJ Westra, K Yamazaki, SK Yang; International Multiple Sclerosis Genetics Consortium; International IBD Genetics Consortium, Barrett JC, Alizadeh BZ, Parkes M, Bk T, Daly MJ, Kubo M, Anderson CA, Weersma RK. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 2015; 47(9): 979–986
https://doi.org/10.1038/ng.3359
46 P Surendran, F Drenos, R Young, H Warren, JP Cook, AK Manning, N Grarup, X Sim, DR Barnes, K Witkowska, JR Staley, V Tragante, T Tukiainen, H Yaghootkar, N Masca, DF Freitag, T Ferreira, O Giannakopoulou, A Tinker, M Harakalova, E Mihailov, C Liu, AT Kraja, S Fallgaard Nielsen, A Rasheed, M Samuel, W Zhao, LL Bonnycastle, AU Jackson, N Narisu, AJ Swift, L Southam, J Marten, JR Huyghe, A Stancakova, C Fava, T Ohlsson, A Matchan, KE Stirrups, J Bork-Jensen, AP Gjesing, J Kontto, M Perola, S Shaw-Hawkins, AS Havulinna, H Zhang, LA Donnelly, CJ Groves, NW Rayner, MJ Neville, NR Robertson, AM Yiorkas, KH Herzig, E Kajantie, W Zhang, SM Willems, L Lannfelt, G Malerba, N Soranzo, E Trabetti, N Verweij, E Evangelou, A Moayyeri, AC Vergnaud, CP Nelson, A Poveda, TV Varga, M Caslake, AJ de Craen, S Trompet, J Luan, RA Scott, SE Harris, DC Liewald, R Marioni, C Menni, AE Farmaki, G Hallmans, F Renstrom, JE Huffman, M Hassinen, S Burgess, RS Vasan, JF Felix; Consortium CHARGE-Heart Failure, M Uria-Nickelsen, A Malarstig, DF Reily, M Hoek, T Vogt, H Lin, W Lieb; Consortium EchoGen, M Traylor, HF Markus; Consortium METASTROKE, HM Highland, AE Justice, E Marouli; Consortium GIANT, J Lindström, M Uusitupa, P Komulainen, TA Lakka, R Rauramaa, O Polasek, I Rudan, O Rolandsson, PW Franks, G Dedoussis, TD Spector; Consortium EPIC-InterAct, P Jousilahti, S Männistö, IJ Deary, JM Starr, C Langenberg, NJ Wareham, MJ Brown, AF Dominiczak, JM Connell, JW Jukema, N Sattar, I Ford, CJ Packard, T Esko, R Mägi, A Metspalu, RA de Boer, P van der Meer, P van der Harst; Study Lifelines Cohort , G Gambaro, E Ingelsson, L Lind, PI de Bakker, ME Numans, I Brandslund, C Christensen, ER Petersen, E Korpi-Hyövälti, H Oksa, JC Chambers, JS Kooner, AI Blakemore, S Franks, MR Jarvelin, LL Husemoen, A Linneberg, T Skaaby, B Thuesen, F Karpe, J Tuomilehto, AS Doney, AD Morris, CN Palmer, OL Holmen, K Hveem, CJ Willer, T Tuomi, L Groop, A Käräjämäki, A Palotie, S Ripatti, V Salomaa, DS Alam, AA Shafi Majumder, E Di Angelantonio , R Chowdhury, MI McCarthy, N Poulter, AV Stanton, P Sever, P Amouyel, D Arveiler, S Blankenberg, J Ferrières, F Kee, K Kuulasmaa, M Müller-Nurasyid , G Veronesi, J Virtamo, P Deloukas; Consortium Wellcome Trust Case Control, P Elliott; Scientific Group Understanding Society, E Zeggini, S Kathiresan, O Melander, J Kuusisto, M Laakso, S Padmanabhan, D Porteous, C Hayward, G Scotland, FS Collins, KL Mohlke, T Hansen, O Pedersen, M Boehnke, HM Stringham; Consortium EPIC-CVD, P Frossard, C Newton-Cheh; Consortium CHARGE+ Exome Chip Blood Pressure, MD Tobin, BG Nordestgaard; Consortium T2D-GENES; Consortium GoT2DGenes; Consortium ExomeBP; Consortium CHD Exome+ , MJ Caulfield, A Mahajan, AP Morris, M Tomaszewski, NJ Samani, D Saleheen, FW Asselbergs, CM Lindgren, J Danesh, LV Wain, AS Butterworth, JM Howson, PB Munroe. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet 2016; 48(10): 1151–1161
https://doi.org/10.1038/ng.3654
47 HS Seo, DD Liu, BN Bekele, MK Kim, K Pisters, SM Lippman, II Wistuba, JS Koo. Cyclic AMP response element-binding protein overexpression: a feature associated with negative prognosis in never smokers with non-small cell lung cancer. Cancer Res 2008; 68(15): 6065–6073
https://doi.org/10.1158/0008-5472.CAN-07-5376
48 CL Walters, JN Cleck, YC Kuo, JA Blendy. Mu-opioid receptor and CREB activation are required for nicotine reward. Neuron 2005; 46(6): 933–943
https://doi.org/10.1016/j.neuron.2005.05.005
49 S Srinivasan, T Totiger, C Shi, J Castellanos, P Lamichhane, AR Dosch, F Messaggio, N Kashikar, K Honnenahally, Y Ban, NB Merchant, M VanSaun, NS Nagathihalli. Tobacco carcinogen-induced production of GM-CSF activates CREB to promote pancreatic cancer. Cancer Res 2018; 78(21): 6146–6158
https://doi.org/10.1158/0008-5472.CAN-18-0579
50 CC Hung, CW Kuo, WH Wang, TH Chang, PJ Chang, LK Chang, ST Liu. Transcriptional activation of Epstein–Barr virus BRLF1 by USF1 and Rta. J Gen Virol 2015; 96(9): 2855–2866
https://doi.org/10.1099/jgv.0.000230
51 E Gao, Y Wang, JL Alcorn, CR Mendelson. The basic helix–loop–helix–zipper transcription factor USF1 regulates expression of the surfactant protein-A gene. J Biol Chem 1997; 272(37): 23398–23406
https://doi.org/10.1074/jbc.272.37.23398
52 PK Ho, CJ Hawkins. Mammalian initiator apoptotic caspases. FEBS J 2005; 272(21): 5436–5453
https://doi.org/10.1111/j.1742-4658.2005.04966.x
53 G MacPherson, CS Healey, MD Teare, SP Balasubramanian, MW Reed, PD Pharoah, BA Ponder, M Meuth, NP Bhattacharyya, A Cox. Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst 2004; 96(24): 1866–1869
https://doi.org/10.1093/jnci/dji001
54 T Sun, Y Gao, W Tan, S Ma, Y Shi, J Yao, Y Guo, M Yang, X Zhang, Q Zhang, C Zeng, D Lin. A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet 2007; 39(5): 605–613
https://doi.org/10.1038/ng2030
55 SE Castel, A Cervera, P Mohammadi, F Aguet, F Reverter, A Wolman, R Guigo, I Iossifov, A Vasileva, T Lappalainen. Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk. Nat Genet 2018; 50(9): 1327–1334
https://doi.org/10.1038/s41588-018-0192-y
56 V Hořejší, W Zhang, B Schraven. Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat Rev Immunol 2004; 4(8): 603–616
https://doi.org/10.1038/nri1414
57 N Brdickova, T Brdicka, P Angelisova, O Horvath, J Spicka, I Hilgert, J Paces, L Simeoni, S Kliche, C Merten, B Schraven, V Horejsi. LIME: a new membrane Raft-associated adaptor protein involved in CD4 and CD8 coreceptor signaling. J Exp Med 2003; 198(10): 1453–1462
https://doi.org/10.1084/jem.20031484
58 BH Lok, SN Powell. Molecular pathways: understanding the role of Rad52 in homologous recombination for therapeutic advancement. Clin Cancer Res 2012; 18(23): 6400–6406
https://doi.org/10.1158/1078-0432.CCR-11-3150
59 M Lisby, R Rothstein, UH Mortensen. Rad52 forms DNA repair and recombination centers during S phase. Proc Natl Acad Sci USA 2001; 98(15): 8276–8282
https://doi.org/10.1073/pnas.121006298
60 P Galanos, G Pappas, A Polyzos, A Kotsinas, I Svolaki, NN Giakoumakis, C Glytsou, IS Pateras, U Swain, VL Souliotis, AG Georgakilas, N Geacintov, L Scorrano, C Lukas, J Lukas, Z Livneh, Z Lygerou, D Chowdhury, CS Sorensen, J Bartek, VG Gorgoulis. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol 2018; 19(1): 37
https://doi.org/10.1186/s13059-018-1401-9
61 R Lieberman, D Xiong, M James, Y Han, CI Amos, L Wang, M You. Functional characterization of RAD52 as a lung cancer susceptibility gene in the 12p13.33 locus. Mol Carcinog 2016; 55(5): 953–963
https://doi.org/10.1002/mc.22334
62 D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674
https://doi.org/10.1016/j.cell.2011.02.013
63 DS Chen, I Mellman. Elements of cancer immunity and the cancer-immune set point. Nature 2017; 541(7637): 321–330
https://doi.org/10.1038/nature21349
64 Y Lavin, S Kobayashi, A Leader, ED Amir, N Elefant, C Bigenwald, R Remark, R Sweeney, CD Becker, JH Levine, K Meinhof, A, Chow S Kim-Shulze, A Wolf, C Medaglia, H Li, JA Rytlewski, RO Emerson, A Solovyov, BD Greenbaum, C Sanders, M Vignali, MB Beasley, R Flores, S Gnjatic, D Pe'er, A, Rahman I Amit, M Merad. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 2017; 169(4): 750–765.e17
https://doi.org/10.1016/j.cell.2017.04.014
65 S Tiwari, BC Tripathy, A Jajoo, AB Das, N Murata, PV Sane, Govindjee. Prasanna K. Mohanty (1934–2013): a great photosynthetiker and a wonderful human being who touched the hearts of many. Photosynth Res 2014; 122(3): 235–260
https://doi.org/10.1007/s11120-014-0033-5
66 SS Hecht. Lung carcinogenesis by tobacco smoke. Int J Cancer 2012; 131(12): 2724–2732
https://doi.org/10.1002/ijc.27816
67 RS Herbst, P Baas, DW Kim, E Felip, JL Perez-Gracia, JY Han, J Molina, JH Kim, CD Arvis, MJ Ahn, M Majem, MJ Fidler, G de Castro Jr, M Garrido, GM Lubiniecki, Y Shentu, E Im, M Dolled-Filhart, EB Garon. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 2016; 387(10027): 1540–1550
https://doi.org/10.1016/S0140-6736(15)01281-7
68 M Reck, D Rodriguez-Abreu, AG Robinson, R Hui, T Csoszi, A Fulop, M Gottfried, N Peled, A Tafreshi, S Cuffe, M O’Brien, S Rao, K Hotta, MA Leiby, GM Lubiniecki, Y Shentu, R Rangwala, JR Brahmer. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med 2016; 375(19): 1823–1833
https://doi.org/10.1056/NEJMoa1606774
[1] Suplementary Table Download
[2] Supplementary Material Download
[1] Mahmoud Mohammad Yaseen, Nizar Mohammad Abuharfeil, Homa Darmani, Ammar Daoud. Recent advances in myeloid-derived suppressor cell biology[J]. Front. Med., 2021, 15(2): 232-251.
[2] Jianpeng Liu, Xinhua Chen, Shusen Zheng. Immune response triggered by the ablation of hepatocellular carcinoma with nanosecond pulsed electric field[J]. Front. Med., 2021, 15(2): 170-177.
[3] Yong Fan, Yan Geng, Lin Shen, Zhuoli Zhang. Advances on immune-related adverse events associated with immune checkpoint inhibitors[J]. Front. Med., 2021, 15(1): 33-42.
[4] Xiaohui Wang, Zhiqiang Wu, Wei Qiu, Ping Chen, Xiang Xu, Weidong Han. Programming CAR T cells to enhance anti-tumor efficacy through remodeling of the immune system[J]. Front. Med., 2020, 14(6): 726-745.
[5] Houli Zhao, Yiyun Wang, Elaine Tan Su Yin, Kui Zhao, Yongxian Hu, He Huang. A giant step forward: chimeric antigen receptor T-cell therapy for lymphoma[J]. Front. Med., 2020, 14(6): 711-725.
[6] Qiaoshuai Lan, Shuai Xia, Qian Wang, Wei Xu, Haiyan Huang, Shibo Jiang, Lu Lu. Development of oncolytic virotherapy: from genetic modification to combination therapy[J]. Front. Med., 2020, 14(2): 160-184.
[7] Jiahui Xu, Qianqian Wang, Elaine Lai Han Leung, Ying Li, Xingxing Fan, Qibiao Wu, Xiaojun Yao, Liang Liu. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer[J]. Front. Med., 2020, 14(1): 60-67.
[8] Yumeng Wang, Guiling Li. PD-1/PD-L1 blockade in cervical cancer: current studies and perspectives[J]. Front. Med., 2019, 13(4): 438-450.
[9] Shihua Wang, Rongjia Zhu, Hongling Li, Jing Li, Qin Han, Robert Chunhua Zhao. Mesenchymal stem cells and immune disorders: from basic science to clinical transition[J]. Front. Med., 2019, 13(2): 138-151.
[10] Zhao Zhang, Jun Jiang, Xiaodong Wu, Mengyao Zhang, Dan Luo, Renyu Zhang, Shiyou Li, Youwen He, Huijie Bian, Zhinan Chen. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy[J]. Front. Med., 2019, 13(1): 57-68.
[11] Min Zhang, Jingwen Yang, Wenjing Hua, Zhong Li, Zenghui Xu, Qijun Qian. Monitoring checkpoint inhibitors: predictive biomarkers in immunotherapy[J]. Front. Med., 2019, 13(1): 32-44.
[12] Zhen Xiang, Yingyan Yu. Screening responsive or resistant biomarkers of immune checkpoint inhibitors based on online databases[J]. Front. Med., 2019, 13(1): 24-31.
[13] Chenfei Zhou, Jun Zhang. Immunotherapy-based combination strategies for treatment of gastrointestinal cancers: current status and future prospects[J]. Front. Med., 2019, 13(1): 12-23.
[14] Kohei Miyazono, Yoko Katsuno, Daizo Koinuma, Shogo Ehata, Masato Morikawa. Intracellular and extracellular TGF-β signaling in cancer: some recent topics[J]. Front. Med., 2018, 12(4): 387-411.
[15] Fang Fang, Weihua Xiao, Zhigang Tian. Challenges of NK cell-based immunotherapy in the new era[J]. Front. Med., 2018, 12(4): 440-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed