|
|
A giant step forward: chimeric antigen receptor T-cell therapy for lymphoma |
Houli Zhao1,2,3, Yiyun Wang1,2,3, Elaine Tan Su Yin1,2,3, Kui Zhao4, Yongxian Hu1,2,3( ), He Huang1,2,3( ) |
1. Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China 2. Zhejiang Province Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310000, China 3. Institute of Hematology, Zhejiang University, Hangzhou 310000, China 4. PET-CT Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China |
|
|
Abstract The combination of the immunotherapy (i.e., the use of monoclonal antibodies) and the conventional chemotherapy increases the long-term survival of patients with lymphoma. However, for patients with relapsed or treatment-resistant lymphoma, a novel treatment approach is urgently needed. Chimeric antigen receptor T (CAR-T) cells were introduced as a treatment for these patients. Based on recent clinical data, approximately 50% of patients with relapsed or refractory B-cell lymphoma achieved complete remission after receiving the CD19 CAR-T cell therapy. Moreover, clinical data revealed that some patients remained in remission for more than two years after the CAR-T cell therapy. Other than the CD19-targeted CAR-T, the novel target antigens, such as CD20, CD22, CD30, and CD37, which were greatly expressed on lymphoma cells, were studied under preclinical and clinical evaluations for use in the treatment of lymphoma. Nonetheless, the CAR-T therapy was usually associated with potentially lethal adverse effects, such as the cytokine release syndrome and the neurotoxicity. Therefore, optimizing the structure of CAR, creating new drugs, and combining CAR-T cell therapy with stem cell transplantation are potential solutions to increase the effectiveness of treatment and reduce the toxicity in patients with lymphoma after the CAR-T cell therapy.
|
Keywords
chimeric antigen receptor T (CAR-T) cell
lymphoma
cytokine release syndrome (CRS)
immune effector cell-associated neurotoxicity syndrome (ICANS)
|
Corresponding Author(s):
Yongxian Hu,He Huang
|
Just Accepted Date: 27 October 2020
Online First Date: 26 November 2020
Issue Date: 24 December 2020
|
|
1 |
WHO. WHO classification of tumours of haematopoietic and lymphoid tissue. 4th ed. Geneva: World Health Organization, 2008
|
2 |
RL Siegel, KD Miller, A Jemal. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7–34
https://doi.org/10.3322/caac.21551
pmid: 30620402
|
3 |
Y Zhang, J Tuo, R Zheng, S Zhang, M Zhang, G Li, N Yang, W Lu, W Chen. An analysis of incidence and mortality of malignant lymphoma in China, 2009. China Cancer 2013; 22: 338–343
|
4 |
GP Canellos, JR Anderson, KJ Propert, N Nissen, MR Cooper, ES Henderson, MR Green, A Gottlieb, BA Peterson. Chemotherapy of advanced Hodgkin’s disease with MOPP, ABVD, or MOPP alternating with ABVD. N Engl J Med 1992; 327(21): 1478–1484
https://doi.org/10.1056/NEJM199211193272102
pmid: 1383821
|
5 |
B Coiffier, C Thieblemont, E Van Den Neste, G Lepeu, I Plantier, S Castaigne, S Lefort, G Marit, M Macro, C Sebban, K Belhadj, D Bordessoule, C Fermé, H Tilly. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood 2010; 116(12): 2040–2045
https://doi.org/10.1182/blood-2010-03-276246
pmid: 20548096
|
6 |
M Pfreundschuh, E Kuhnt, L Trümper, A Osterborg, M Trneny, L Shepherd, DS Gill, J Walewski, R Pettengell, U Jaeger, PL Zinzani, O Shpilberg, S Kvaloy, P de Nully Brown, R Stahel, N Milpied, A López-Guillermo, V Poeschel, S Grass, M Loeffler, N, MabThera International Trial (MInT) Group Murawski. CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group. Lancet Oncol 2011; 12(11): 1013–1022
https://doi.org/10.1016/S1470-2045(11)70235-2
pmid: 21940214
|
7 |
JO Armitage, RD Gascoyne, MA Lunning, F Cavalli. Non-Hodgkin lymphoma. Lancet 2017; 390(10091): 298–310
https://doi.org/10.1016/S0140-6736(16)32407-2
pmid: 28153383
|
8 |
Y Hu, Z Wu, Y Luo, J Shi, J Yu, C Pu, Z Liang, G Wei, Q Cui, J Sun, J Jiang, J Xie, Y Tan, W Ni, J Tu, J Wang, A Jin, H Zhang, Z Cai, L Xiao, H Huang. Potent anti-leukemia activities of chimeric antigen receptor-modified T cells against CD19 in Chinese patients with relapsed/refractory acute lymphocytic leukemia. Clin Cancer Res 2017; 23(13): 3297–3306
https://doi.org/10.1158/1078-0432.CCR-16-1799
pmid: 28039267
|
9 |
KT Mueller, E Waldron, SA Grupp, JE Levine, TW Laetsch, MA Pulsipher, MW Boyer, KJ August, J Hamilton, R Awasthi, AM Stein, D Sickert, A Chakraborty, BL Levine, CH June, L Tomassian, SS Shah, M Leung, T Taran, PA Wood, SL Maude. Clinical pharmacology of tisagenlecleucel in B-cell acute lymphoblastic leukemia. Clin Cancer Res 2018; 24(24): 6175–6184
https://doi.org/10.1158/1078-0432.CCR-18-0758
pmid: 30190371
|
10 |
JN Kochenderfer, ME Dudley, SH Kassim, RP Somerville, RO Carpenter, M Stetler-Stevenson, JC Yang, GQ Phan, MS Hughes, RM Sherry, M Raffeld, S Feldman, L Lu, YF Li, LT Ngo, A Goy, T Feldman, DE Spaner, ML Wang, CC Chen, SM Kranick, A Nath, DA Nathan, KE Morton, MA Toomey, SA Rosenberg. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 2015; 33(6): 540–549
https://doi.org/10.1200/JCO.2014.56.2025
pmid: 25154820
|
11 |
SJ Schuster, MR Bishop, CS Tam, EK Waller, P Borchmann, JP McGuirk, U Jäger, S Jaglowski, C Andreadis, JR Westin, I Fleury, V Bachanova, SR Foley, PJ Ho, S Mielke, JM Magenau, H Holte, S Pantano, LB Pacaud, R Awasthi, J Chu, Ö Anak, G Salles, RT, Maziarz JULIET Investigators. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2019; 380(1): 45–56
https://doi.org/10.1056/NEJMoa1804980
pmid: 30501490
|
12 |
FL Locke, A Ghobadi, CA Jacobson, DB Miklos, LJ Lekakis, OO Oluwole, Y Lin, I Braunschweig, BT Hill, JM Timmerman, A Deol, PM Reagan, P Stiff, IW Flinn, U Farooq, A Goy, PA McSweeney, J Munoz, T Siddiqi, JC Chavez, AF Herrera, NL Bartlett, JS Wiezorek, L Navale, A Xue, Y Jiang, A Bot, JM Rossi, JJ Kim, WY Go, SS Neelapu. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol 2019; 20(1): 31–42
https://doi.org/10.1016/S1470-2045(18)30864-7
pmid: 30518502
|
13 |
D Campana, H Schwarz, C Imai. 4-1BB chimeric antigen receptors. Cancer J 2014; 20(2): 134–140
https://doi.org/10.1097/PPO.0000000000000028
pmid: 24667959
|
14 |
G Gross, T Waks, Z Eshhar. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989; 86(24): 10024–10028
https://doi.org/10.1073/pnas.86.24.10024
pmid: 2513569
|
15 |
Y Kuwana, Y Asakura, N Utsunomiya, M Nakanishi, Y Arata, S Itoh, F Nagase, Y Kurosawa. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun 1987; 149(3): 960–968
https://doi.org/10.1016/0006-291X(87)90502-X
pmid: 3122749
|
16 |
Z Eshhar, T Waks, G Gross, DG Schindler. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993; 90(2): 720–724
https://doi.org/10.1073/pnas.90.2.720
pmid: 8421711
|
17 |
RJ Brentjens, JB Latouche, E Santos, F Marti, MC Gong, C Lyddane, PD King, S Larson, M Weiss, I Rivière, M Sadelain. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 2003; 9(3): 279–286
https://doi.org/10.1038/nm827
pmid: 12579196
|
18 |
J Maher, RJ Brentjens, G Gunset, I Rivière, M Sadelain. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ /CD28 receptor. Nat Biotechnol 2002; 20(1): 70–75
https://doi.org/10.1038/nbt0102-70
pmid: 11753365
|
19 |
C Imai, K Mihara, M Andreansky, IC Nicholson, CH Pui, TL Geiger, D Campana. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004; 18(4): 676–684
https://doi.org/10.1038/sj.leu.2403302
pmid: 14961035
|
20 |
JN Kochenderfer, WH Wilson, JE Janik, ME Dudley, M Stetler-Stevenson, SA Feldman, I Maric, M Raffeld, DA Nathan, BJ Lanier, RA Morgan, SA Rosenberg. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010; 116(20): 4099–4102
https://doi.org/10.1182/blood-2010-04-281931
pmid: 20668228
|
21 |
MA Pulè, KC Straathof, G Dotti, HE Heslop, CM Rooney, MK Brenner. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 2005; 12(5): 933–941
https://doi.org/10.1016/j.ymthe.2005.04.016
pmid: 15979412
|
22 |
J Wang, M Jensen, Y Lin, X Sui, E Chen, CG Lindgren, B Till, A Raubitschek, SJ Forman, X Qian, S James, P Greenberg, S Riddell, OW Press. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 2007; 18(8): 712–725
https://doi.org/10.1089/hum.2007.028
pmid: 17685852
|
23 |
S Wilkie, G Picco, J Foster, DM Davies, S Julien, L Cooper, S Arif, SJ Mather, J Taylor-Papadimitriou, JM Burchell, J Maher. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 2008; 180(7): 4901–4909
https://doi.org/10.4049/jimmunol.180.7.4901
pmid: 18354214
|
24 |
C Carpenito, MC Milone, R Hassan, JC Simonet, M Lakhal, MM Suhoski, A Varela-Rohena, KM Haines, DF Heitjan, SM Albelda, RG Carroll, JL Riley, I Pastan, CH June. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 2009; 106(9): 3360–3365
https://doi.org/10.1073/pnas.0813101106
pmid: 19211796
|
25 |
S Tammana, X Huang, M Wong, MC Milone, L Ma, BL Levine, CH June, JE Wagner, BR Blazar, X Zhou. 4-1BB and CD28 signaling plays a synergistic role in redirecting umbilical cord blood T cells against B-cell malignancies. Hum Gene Ther 2010; 21(1): 75–86
https://doi.org/10.1089/hum.2009.122
pmid: 19719389
|
26 |
XS Zhong, M Matsushita, J Plotkin, I Riviere, M Sadelain. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol Ther 2010; 18(2): 413–420
https://doi.org/10.1038/mt.2009.210
pmid: 19773745
|
27 |
AA Hombach, M Chmielewski, G Rappl, H Abken. Adoptive immunotherapy with redirected T cells produces CCR7− cells that are trapped in the periphery and benefit from combined CD28-OX40 costimulation. Hum Gene Ther 2013; 24(3): 259–269
https://doi.org/10.1089/hum.2012.247
pmid: 23350854
|
28 |
CP Duong, JA Westwood, CS Yong, A Murphy, C Devaud, LB John, PK Darcy, MH Kershaw. Engineering T cell function using chimeric antigen receptors identified using a DNA library approach. PLoS One 2013; 8(5): e63037
https://doi.org/10.1371/journal.pone.0063037
pmid: 23667569
|
29 |
BG Till, MC Jensen, J Wang, X Qian, AK Gopal, DG Maloney, CG Lindgren, Y Lin, JM Pagel, LE Budde, A Raubitschek, SJ Forman, PD Greenberg, SR Riddell, OW Press. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 2012; 119(17): 3940–3950
https://doi.org/10.1182/blood-2011-10-387969
pmid: 22308288
|
30 |
Y Chen, C Sun, E Landoni, L Metelitsa, G Dotti, B Savoldo. Eradication of neuroblastoma by T cells redirected with an optimized GD2-specific chimeric antigen receptor and interleukin-15. Clin Cancer Res 2019; 25(9): 2915–2924
https://doi.org/10.1158/1078-0432.CCR-18-1811
pmid: 30617136
|
31 |
Z Zhao, M Condomines, SJC van der Stegen, F Perna, CC Kloss, G Gunset, J Plotkin, M Sadelain. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 2015; 28(4): 415–428
https://doi.org/10.1016/j.ccell.2015.09.004
pmid: 26461090
|
32 |
I Diaconu, B Ballard, M Zhang, Y Chen, J West, G Dotti, B Savoldo. Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T cells. Mol Ther 2017; 25(3): 580–592
https://doi.org/10.1016/j.ymthe.2017.01.011
pmid: 28187946
|
33 |
R Sakemura, S Terakura, K Watanabe, J Julamanee, E Takagi, K Miyao, D Koyama, T Goto, R Hanajiri, T Nishida, M Murata, H Kiyoi. A Tet-On inducible system for controlling CD19-chimeric antigen receptor expression upon drug administration. Cancer Immunol Res 2016; 4(8): 658–668
https://doi.org/10.1158/2326-6066.CIR-16-0043
pmid: 27329987
|
34 |
J Zhao, Q Lin, Y Song, D Liu. Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol 2018; 11(1): 132
https://doi.org/10.1186/s13045-018-0677-2
pmid: 30482221
|
35 |
JH Cho, JJ Collins, WW Wong. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 2018; 173(6): 1426–1438.e11
https://doi.org/10.1016/j.cell.2018.03.038
pmid: 29706540
|
36 |
K Urbanska, E Lanitis, M Poussin, RC Lynn, BP Gavin, S Kelderman, J Yu, N Scholler, DJ Powell Jr. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res 2012; 72(7): 1844–1852
https://doi.org/10.1158/0008-5472.CAN-11-3890
pmid: 22315351
|
37 |
D Liu, J Zhao, Y Song. Engineering switchable and programmable universal CARs for CAR T therapy. J Hematol Oncol 2019; 12(1): 69
https://doi.org/10.1186/s13045-019-0763-0
pmid: 31272471
|
38 |
MS Kim, JS Ma, H Yun, Y Cao, JY Kim, V Chi, D Wang, A Woods, L Sherwood, D Caballero, J Gonzalez, PG Schultz, TS Young, CH Kim. Redirection of genetically engineered CAR-T cells using bifunctional small molecules. J Am Chem Soc 2015; 137(8): 2832–2835
https://doi.org/10.1021/jacs.5b00106
pmid: 25692571
|
39 |
CF Hung, X Xu, L Li, Y Ma, Q Jin, A Viley, C Allen, P Natarajan, R Shivakumar, MV Peshwa, LA Emens. Development of anti-human mesothelin-targeted chimeric antigen receptor messenger RNA-transfected peripheral blood lymphocytes for ovarian cancer therapy. Hum Gene Ther 2018; 29(5): 614–625
https://doi.org/10.1089/hum.2017.080
pmid: 29334771
|
40 |
DL Crossland, WL Denning, S Ang, S Olivares, T Mi, K Switzer, H Singh, H Huls, KS Gold, BS Glisson, LJ Cooper, JV Heymach. Antitumor activity of CD56-chimeric antigen receptor T cells in neuroblastoma and SCLC models. Oncogene 2018; 37(27): 3686–3697
https://doi.org/10.1038/s41388-018-0187-2
pmid: 29622795
|
41 |
P Kebriaei, H Singh, MH Huls, MJ Figliola, R Bassett, S Olivares, B Jena, MJ Dawson, PR Kumaresan, S Su, S Maiti, J Dai, B Moriarity, MA Forget, V Senyukov, A Orozco, T Liu, J McCarty, RN Jackson, JS Moyes, G Rondon, M Qazilbash, S Ciurea, A Alousi, Y Nieto, K Rezvani, D Marin, U Popat, C Hosing, EJ Shpall, H Kantarjian, M Keating, W Wierda, KA Do, DA Largaespada, DA Lee, PB Hackett, RE Champlin, LJ Cooper. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest 2016; 126(9): 3363–3376
https://doi.org/10.1172/JCI86721
pmid: 27482888
|
42 |
CJ Turtle, C Berger, D Sommermeyer, LA Hanafi, B Pender, EM Robinson, K Melville, TM Budiarto, NN Steevens, C Chaney, S Cherian, BL Wood, L Soma, X Chen, S Heimfeld, MC Jensen, SR Riddell, DG Maloney. Anti-CD19 chimeric antigen receptor-modified T cell therapy for B cell non-Hodgkin lymphoma and chronic lymphocytic leukemia: fludarabine and cyclophosphamide lymphodepletion improves in vivo expansion and persistence of CAR-T cells and clinical outcomes. Blood 2015; 126(23): 184
https://doi.org/10.1182/blood.V126.23.184.184
|
43 |
A Heczey, CU Louis, B Savoldo, O Dakhova, A Durett, B Grilley, H Liu, MF Wu, Z Mei, A Gee, B Mehta, H Zhang, N Mahmood, H Tashiro, HE Heslop, G Dotti, CM Rooney, MK Brenner. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol Ther 2017; 25(9): 2214–2224
https://doi.org/10.1016/j.ymthe.2017.05.012
pmid: 28602436
|
44 |
S Ninomiya, N Narala, L Huye, S Yagyu, B Savoldo, G Dotti, HE Heslop, MK Brenner, CM Rooney, CA Ramos. Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood 2015; 125(25): 3905–3916
https://doi.org/10.1182/blood-2015-01-621474
pmid: 25940712
|
45 |
AV Hirayama, J Gauthier, KA Hay, JM Voutsinas, Q Wu, T Gooley, D Li, S Cherian, X Chen, BS Pender, RM Hawkins, A Vakil, RN Steinmetz, UH Acharya, RD Cassaday, AG Chapuis, TM Dhawale, PC Hendrie, HP Kiem, RC Lynch, J Ramos, M Shadman, BG Till, SR Riddell, DG Maloney, CJ Turtle. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood 2019; 133(17): 1876–1887
https://doi.org/10.1182/blood-2018-11-887067
pmid: 30782611
|
46 |
JS Boomer, JM Green. An enigmatic tail of CD28 signaling. Cold Spring Harb Perspect Biol 2010; 2(8): a002436
https://doi.org/10.1101/cshperspect.a002436
pmid: 20534709
|
47 |
C Chester, MF Sanmamed, J Wang, I Melero. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 2018; 131(1): 49–57
https://doi.org/10.1182/blood-2017-06-741041
pmid: 29118009
|
48 |
OU Kawalekar, RS O’Connor, JA Fraietta, L Guo, SE McGettigan, AD Posey Jr, PR Patel, S Guedan, J Scholler, B Keith, NW Snyder, IA Blair, MC Milone, CH June. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 2016; 44(2): 380–390
https://doi.org/10.1016/j.immuni.2016.01.021
pmid: 26885860
|
49 |
J Wang, OW Press, CG Lindgren, P Greenberg, S Riddell, X Qian, C Laugen, A Raubitschek, SJ Forman, MC Jensen. Cellular immunotherapy for follicular lymphoma using genetically modified CD20-specific CD8+ cytotoxic T lymphocytes. Mol Ther 2004; 9(4): 577–586
https://doi.org/10.1016/j.ymthe.2003.12.011
pmid: 15093188
|
50 |
SE James, NN Orgun, TF Tedder, MJ Shlomchik, MC Jensen, Y Lin, PD Greenberg, OW Press. Antibody-mediated B-cell depletion before adoptive immunotherapy with T cells expressing CD20-specific chimeric T-cell receptors facilitates eradication of leukemia in immunocompetent mice. Blood 2009; 114(27): 5454–5463
https://doi.org/10.1182/blood-2009-08-232967
pmid: 19880489
|
51 |
WY Zhang, Y Liu, Y Wang, CM Wang, QM Yang, HL Zhu, WD Han. Long-term safety and efficacy of CART-20 cells in patients with refractory or relapsed B-cell non-Hodgkin lymphoma: 5-years follow-up results of the phase I and IIa trials. Signal Transduct Target Ther 2017; 2(1): 17054
https://doi.org/10.1038/sigtrans.2017.54
pmid: 29263931
|
52 |
W Haso, DW Lee, NN Shah, M Stetler-Stevenson, CM Yuan, IH Pastan, DS Dimitrov, RA Morgan, DJ FitzGerald, DM Barrett, AS Wayne, CL Mackall, RJ Orentas. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 2013; 121(7): 1165–1174
https://doi.org/10.1182/blood-2012-06-438002
pmid: 23243285
|
53 |
H Shalabi, PL Wolters, S Martin, MA Toledo-Tamula, MC Roderick, K Struemph, E Kane, B Yates, C Delbrook, CL Mackall, DW Lee, TJ Fry, NN Shah. Systematic evaluation of neurotoxicity in children and young adults undergoing CD22 chimeric antigen receptor T-cell therapy. J Immunother 2018; 41(7): 350–358
https://doi.org/10.1097/CJI.0000000000000241
pmid: 30048343
|
54 |
TJ Fry, NN Shah, RJ Orentas, M Stetler-Stevenson, CM Yuan, S Ramakrishna, P Wolters, S Martin, C Delbrook, B Yates, H Shalabi, TJ Fountaine, JF Shern, RG Majzner, DF Stroncek, M Sabatino, Y Feng, DS Dimitrov, L Zhang, S Nguyen, H Qin, B Dropulic, DW Lee, CL Mackall. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 2018; 24(1): 20–28
https://doi.org/10.1038/nm.4441
pmid: 29155426
|
55 |
H Dürkop, U Latza, M Hummel, F Eitelbach, B Seed, H Stein. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 1992; 68(3): 421–427
https://doi.org/10.1016/0092-8674(92)90180-K
pmid: 1310894
|
56 |
JM Pierce, A Mehta. Diagnostic, prognostic and therapeutic role of CD30 in lymphoma. Expert Rev Hematol 2017; 10(1): 29–37
https://doi.org/10.1080/17474086.2017.1270202
pmid: 27927047
|
57 |
R Horie, T Watanabe. CD30: expression and function in health and disease. Semin Immunol 1998; 10(6): 457–470
https://doi.org/10.1006/smim.1998.0156
pmid: 9826579
|
58 |
B Falini, S Pileri, G Pizzolo, H Dürkop, L Flenghi, F Stirpe, MF Martelli, H Stein. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood 1995; 85(1): 1–14
https://doi.org/10.1182/blood.V85.1.1.bloodjournal8511
pmid: 7803786
|
59 |
A Hombach, C Heuser, R Sircar, T Tillmann, V Diehl, C Pohl, H Abken. An anti-CD30 chimeric receptor that mediates CD3-ζ-independent T-cell activation against Hodgkin’s lymphoma cells in the presence of soluble CD30. Cancer Res 1998; 58(6): 1116–1119
pmid: 9515791
|
60 |
B Savoldo, CM Rooney, A Di Stasi, H Abken, A Hombach, AE Foster, L Zhang, HE Heslop, MK Brenner, G Dotti. Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30ζ artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 2007; 110(7): 2620–2630
https://doi.org/10.1182/blood-2006-11-059139
pmid: 17507664
|
61 |
CA Ramos, B Ballard, H Zhang, O Dakhova, AP Gee, Z Mei, M Bilgi, MF Wu, H Liu, B Grilley, CM Bollard, BH Chang, CM Rooney, MK Brenner, HE Heslop, G Dotti, B Savoldo. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J Clin Invest 2017; 127(9): 3462–3471
https://doi.org/10.1172/JCI94306
pmid: 28805662
|
62 |
CM Wang, ZQ Wu, Y Wang, YL Guo, HR Dai, XH Wang, X Li, YJ Zhang, WY Zhang, MX Chen, Y Zhang, KC Feng, Y Liu, SX Li, QM Yang, WD Han. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res 2017; 23(5): 1156–1166
https://doi.org/10.1158/1078-0432.CCR-16-1365
pmid: 27582488
|
63 |
S Barrena, J Almeida, M Yunta, A López, N Fernández-Mosteirín, M Giralt, M Romero, L Perdiguer, M Delgado, A Orfao, PA Lazo. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia 2005; 19(8): 1376–1383
https://doi.org/10.1038/sj.leu.2403822
pmid: 15931266
|
64 |
DS Pereira, CI Guevara, L Jin, N Mbong, A Verlinsky, SJ Hsu, H Aviña, S Karki, JD Abad, P Yang, SJ Moon, F Malik, MY Choi, Z An, K Morrison, PM Challita-Eid, F Doñate, IB Joseph, TJ Kipps, JE Dick, DR Stover. AGS67E, an anti-CD37 monomethyl auristatin E antibody-drug conjugate as a potential therapeutic for B/T-cell malignancies and AML: a new role for CD37 in AML. Mol Cancer Ther 2015; 14(7): 1650–1660
https://doi.org/10.1158/1535-7163.MCT-15-0067
pmid: 25934707
|
65 |
I Scarfò, M Ormhøj, MJ Frigault, AP Castano, S Lorrey, AA Bouffard, A van Scoyk, SJ Rodig, AJ Shay, JC Aster, FI Preffer, DM Weinstock, MV Maus. Anti-CD37 chimeric antigen receptor T cells are active against B- and T-cell lymphomas. Blood 2018; 132(14): 1495–1506
https://doi.org/10.1182/blood-2018-04-842708
pmid: 30089630
|
66 |
H Köksal, P Dillard, SE Josefsson, SM Maggadottir, S Pollmann, A Fåne, YN Blaker, K Beiske, K Huse, A Kolstad, H Holte, G Kvalheim, EB Smeland, JH Myklebust, EM Inderberg, S Wälchli. Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma. Blood Adv 2019; 3(8): 1230–1243
https://doi.org/10.1182/bloodadvances.2018029678
pmid: 30979721
|
67 |
M Ruella, J Xu, DM Barrett, JA Fraietta, TJ Reich, DE Ambrose, M Klichinsky, O Shestova, PR Patel, I Kulikovskaya, F Nazimuddin, VG Bhoj, EJ Orlando, TJ Fry, H Bitter, SL Maude, BL Levine, CL Nobles, FD Bushman, RM Young, J Scholler, SI Gill, CH June, SA Grupp, SF Lacey, JJ Melenhorst. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med 2018; 24(10): 1499–1503
https://doi.org/10.1038/s41591-018-0201-9
pmid: 30275568
|
68 |
KR Calvo, CS McCoy, M Stetler-Stevenson. Flow cytometry immunophenotyping of hematolymphoid neoplasia. Methods Mol Biol 2011; 699: 295–316
https://doi.org/10.1007/978-1-61737-950-5_14
pmid: 21116989
|
69 |
FE Craig, KA Foon. Flow cytometric immunophenotyping for hematologic neoplasms. Blood 2008; 111(8): 3941–3967
https://doi.org/10.1182/blood-2007-11-120535
pmid: 18198345
|
70 |
J Vera, B Savoldo, S Vigouroux, E Biagi, M Pule, C Rossig, J Wu, HE Heslop, CM Rooney, MK Brenner, G Dotti. T lymphocytes redirected against the κ light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 2006; 108(12): 3890–3897
https://doi.org/10.1182/blood-2006-04-017061
pmid: 16926291
|
71 |
CA Ramos, B Savoldo, V Torrano, B Ballard, H Zhang, O Dakhova, E Liu, G Carrum, RT Kamble, AP Gee, Z Mei, MF Wu, H Liu, B Grilley, CM Rooney, MK Brenner, HE Heslop, G Dotti. Clinical responses with T lymphocytes targeting malignancy-associated κ light chains. J Clin Invest 2016; 126(7): 2588–2596
https://doi.org/10.1172/JCI86000
pmid: 27270177
|
72 |
J Wang, Y Hu, S Yang, G Wei, X Zhao, W Wu, Y Zhang, Y Zhang, D Chen, Z Wu, L Xiao, AH Chang, H Huang, K Zhao. Role of fluorodeoxyglucose positron emission tomography/computed tomography in predicting the adverse effects of chimeric antigen receptor T cell therapy in patients with non-Hodgkin lymphoma. Biol Blood Marrow Transplant 2019; 25(6): 1092–1098
https://doi.org/10.1016/j.bbmt.2019.02.008
pmid: 30769193
|
73 |
T Giavridis, SJC van der Stegen, J Eyquem, M Hamieh, A Piersigilli, M Sadelain. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med 2018; 24(6): 731–738
https://doi.org/10.1038/s41591-018-0041-7
pmid: 29808005
|
74 |
M Norelli, B Camisa, G Barbiera, L Falcone, A Purevdorj, M Genua, F Sanvito, M Ponzoni, C Doglioni, P Cristofori, C Traversari, C Bordignon, F Ciceri, R Ostuni, C Bonini, M Casucci, A Bondanza. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 2018; 24(6): 739–748
https://doi.org/10.1038/s41591-018-0036-4
pmid: 29808007
|
75 |
DT Teachey, SF Lacey, PA Shaw, JJ Melenhorst, SL Maude, N Frey, E Pequignot, VE Gonzalez, F Chen, J Finklestein, DM Barrett, SL Weiss, JC Fitzgerald, RA Berg, R Aplenc, C Callahan, SR Rheingold, Z Zheng, S Rose-John, JC White, F Nazimuddin, G Wertheim, BL Levine, CH June, DL Porter, SA Grupp. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 2016; 6(6): 664–679
https://doi.org/10.1158/2159-8290.CD-16-0040
pmid: 27076371
|
76 |
J Wang, Y Hu, H Huang. Current development of chimeric antigen receptor T-cell therapy. Stem Cell Investig 2018; 5: 44
https://doi.org/10.21037/sci.2018.11.05
pmid: 30701179
|
77 |
SS Neelapu, S Tummala, P Kebriaei, W Wierda, C Gutierrez, FL Locke, KV Komanduri, Y Lin, N Jain, N Daver, J Westin, AM Gulbis, ME Loghin, JF de Groot, S Adkins, SE Davis, K Rezvani, P Hwu, EJ Shpall. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol 2018; 15(1): 47–62
https://doi.org/10.1038/nrclinonc.2017.148
pmid: 28925994
|
78 |
DW Lee, R Gardner, DL Porter, CU Louis, N Ahmed, M Jensen, SA Grupp, CL Mackall. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014; 124(2): 188–195
https://doi.org/10.1182/blood-2014-05-552729
pmid: 24876563
|
79 |
JH Park, I Rivière, M Gonen, X Wang, B Sénéchal, KJ Curran, C Sauter, Y Wang, B Santomasso, E Mead, M Roshal, P Maslak, M Davila, RJ Brentjens, M Sadelain. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 2018; 378(5): 449–459
https://doi.org/10.1056/NEJMoa1709919
pmid: 29385376
|
80 |
D Porter, N Frey, PA Wood, Y Weng, SA Grupp. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J Hematol Oncol 2018; 11(1): 35
https://doi.org/10.1186/s13045-018-0571-y
pmid: 29499750
|
81 |
DW Lee, BD Santomasso, FL Locke, A Ghobadi, CJ Turtle, JN Brudno, MV Maus, JH Park, E Mead, S Pavletic, WY Go, L Eldjerou, RA Gardner, N Frey, KJ Curran, K Peggs, M Pasquini, JF DiPersio, MRM van den Brink, KV Komanduri, SA Grupp, SS Neelapu. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant 2019; 25(4): 625–638
https://doi.org/10.1016/j.bbmt.2018.12.758
pmid: 30592986
|
82 |
F Chen, DT Teachey, E Pequignot, N Frey, D Porter, SL Maude, SA Grupp, CH June, JJ Melenhorst, SF Lacey. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J Immunol Methods 2016; 434: 1–8
https://doi.org/10.1016/j.jim.2016.03.005
pmid: 27049586
|
83 |
RM Sterner, R Sakemura, MJ Cox, N Yang, RH Khadka, CL Forsman, MJ Hansen, F Jin, K Ayasoufi, M Hefazi, KJ Schick, DK Walters, O Ahmed, D Chappell, T Sahmoud, C Durrant, WK Nevala, MM Patnaik, LR Pease, KE Hedin, NE Kay, AJ Johnson, SS Kenderian. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 2019; 133(7): 697–709
https://doi.org/10.1182/blood-2018-10-881722
pmid: 30463995
|
84 |
X Xiao, X He, Q Li, H Zhang, J Meng, Y Jiang, Q Deng, M Zhao. Plasma exchange can be an alternative therapeutic modality for severe cytokine release syndrome after chimeric antigen receptor-T cell infusion: a case report. Clin Cancer Res 2019; 25(1): 29–34
https://doi.org/10.1158/1078-0432.CCR-18-1379
pmid: 30322878
|
85 |
S Fried, A Avigdor, B Bielorai, A Meir, MJ Besser, J Schachter, A Shimoni, A Nagler, A Toren, E Jacoby. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplant 2019; 54(10): 1643–1650
https://doi.org/10.1038/s41409-019-0487-3
pmid: 30809033
|
86 |
T Jain, M Bar, AJ Kansagra, EA Chong, SK Hashmi, SS Neelapu, M Byrne, E Jacoby, A Lazaryan, CA Jacobson, SM Ansell, FT Awan, L Burns, V Bachanova, CM Bollard, PA Carpenter, JF DiPersio, M Hamadani, HE Heslop, JA Hill, KV Komanduri, CA Kovitz, HM Lazarus, JM Serrette, M Mohty, D Miklos, A Nagler, SZ Pavletic, BN Savani, SJ Schuster, MA Kharfan-Dabaja, MA Perales, Y Lin. Use of chimeric antigen receptor T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: an expert panel opinion from the American Society for Transplantation and Cellular Therapy. Biol Blood Marrow Transplant 2019; 25(12): 2305–2321
https://doi.org/10.1016/j.bbmt.2019.08.015
pmid: 31446199
|
87 |
MS Topp, N Gökbuget, AS Stein, G Zugmaier, S O’Brien, RC Bargou, H Dombret, AK Fielding, L Heffner, RA Larson, S Neumann, R Foà, M Litzow, JM Ribera, A Rambaldi, G Schiller, M Brüggemann, HA Horst, C Holland, C Jia, T Maniar, B Huber, D Nagorsen, SJ Forman, HM Kantarjian. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 2015; 16(1): 57–66
https://doi.org/10.1016/S1470-2045(14)71170-2
pmid: 25524800
|
88 |
Y Hu, J Sun, Z Wu, J Yu, Q Cui, C Pu, B Liang, Y Luo, J Shi, A Jin, L Xiao, H Huang. Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy. J Hematol Oncol 2016; 9(1): 70
https://doi.org/10.1186/s13045-016-0299-5
pmid: 27526682
|
89 |
D Liu, J Zhao. Cytokine release syndrome: grading, modeling, and new therapy. J Hematol Oncol 2018; 11(1): 121
https://doi.org/10.1186/s13045-018-0653-x
pmid: 30249264
|
90 |
No authors listed. JCAR015 in ALL: a root-cause investigation. Cancer Discov 2018; 8(1): 4–5
pmid: 29208604
|
91 |
JS Abramson, B McGree, S Noyes, S Plummer, C Wong, YB Chen, E Palmer, T Albertson, JA Ferry, IC Arrillaga-Romany. Anti-CD19 CAR T cells in CNS diffuse large-B-cell lymphoma. N Engl J Med 2017; 377(8): 783–784
https://doi.org/10.1056/NEJMc1704610
pmid: 28834486
|
92 |
DW Lee, JN Kochenderfer, M Stetler-Stevenson, YK Cui, C Delbrook, SA Feldman, TJ Fry, R Orentas, M Sabatino, NN Shah, SM Steinberg, D Stroncek, N Tschernia, C Yuan, H Zhang, L Zhang, SA Rosenberg, AS Wayne, CL Mackall. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015; 385(9967): 517–528
https://doi.org/10.1016/S0140-6736(14)61403-3
pmid: 25319501
|
93 |
BD Santomasso, JH Park, D Salloum, I Riviere, J Flynn, E Mead, E Halton, X Wang, B Senechal, T Purdon, JR Cross, H Liu, B Vachha, X Chen, LM DeAngelis, D Li, Y Bernal, M Gonen, HG Wendel, M Sadelain, RJ Brentjens. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov 2018; 8(8): 958–971
https://doi.org/10.1158/2159-8290.CD-17-1319
pmid: 29880584
|
94 |
J Gust, KA Hay, LA Hanafi, D Li, D Myerson, LF Gonzalez-Cuyar, C Yeung, WC Liles, M Wurfel, JA Lopez, J Chen, D Chung, S Harju-Baker, T Özpolat, KR Fink, SR Riddell, DG Maloney, CJ Turtle. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 2017; 7(12): 1404–1419
https://doi.org/10.1158/2159-8290.CD-17-0698
pmid: 29025771
|
95 |
FL Locke, SS Neelapu, NL Bartlett, LJ Lekakis, CA Jacobson, I Braunschweig, OO Oluwole, T Siddiqi, Y Lin, JM Timmerman, PM Reagan, A Bot, JM Rossi, M Sherman, L Navale, Y Jiang, JS Aycock, M Elias, JS Wiezorek, WY, Go DB Miklos. Preliminary results of prophylactic tocilizumab after axicabtageneciloleucel (axi-cel; KTE-C19) treatment for patients with refractory, aggressive non-Hodgkin lymphoma (NHL). Blood 2017 ; 130 (Supplement_1): 1547
https://doi.org/10.1182/blood.V130.Suppl_1.1547.1547
|
96 |
A Jin, J Feng, Z Wang, L Jiang, Y Hu, K Zhao, H Huang. Severe dyspnea caused by rapid enlargement of cervical lymph node in a relapsed/refractory B-cell lymphoma patient following chimeric antigen receptor T-cell therapy. Bone Marrow Transplant 2019; 54(7): 969–972
https://doi.org/10.1038/s41409-018-0412-1
pmid: 30563981
|
97 |
Y Hu, J Wang, C Pu, K Zhao, Q Cui, G Wei, W Wu, L Xiao, Y Xiao, J Wang, Z Wu, H Huang. Delayed terminal ileal perforation in a relapsed/refractory B-cell lymphoma patient with rapid remission following chimeric antigen receptor T-cell therapy. Cancer Res Treat 2018; 50(4): 1462–1466
https://doi.org/10.4143/crt.2017.473
pmid: 29397660
|
98 |
G Hopfinger, U Jäger, N Worel. CAR-T cell therapy in diffuse large B cell lymphoma: hype and hope. HemaSphere 2019; 3(2): e185
https://doi.org/10.1097/HS9.0000000000000185
pmid: 31723824
|
99 |
VG Bhoj, D Arhontoulis, G Wertheim, J Capobianchi, CA Callahan, CT Ellebrecht, AE Obstfeld, SF Lacey, JJ Melenhorst, F Nazimuddin, WT Hwang, SL Maude, MA Wasik, A Bagg, S Schuster, MD Feldman, DL Porter, SA Grupp, CH June, MC Milone. Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood 2016; 128(3): 360–370
https://doi.org/10.1182/blood-2016-01-694356
pmid: 27166358
|
100 |
AJ Kansagra, NV Frey, M Bar, TW Laetsch, PA Carpenter, BN Savani, HE Heslop, CM Bollard, KV Komanduri, DA Gastineau, C Chabannon, MA Perales, M Hudecek, M Aljurf, L Andritsos, JA Barrett, V Bachanova, C Bonini, A Ghobadi, SI Gill, JA Hill, S Kenderian, P Kebriaei, A Nagler, D Maloney, HD Liu, NN Shah, MA Kharfan-Dabaja, EJ Shpall, GJ Mufti, L Johnston, E Jacoby, A Bazarbachi, JF DiPersio, SZ Pavletic, DL Porter, SA Grupp, M Sadelain, MR Litzow, M Mohty, SK Hashmi. Clinical utilization of chimeric antigen receptor T-cells (CAR-T) in B-cell acute lymphoblastic leukemia (ALL)—an expert opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transplant 2019; 54(11): 1868–1880
https://doi.org/10.1038/s41409-019-0451-2
pmid: 31092900
|
101 |
SL Maude, N Frey, PA Shaw, R Aplenc, DM Barrett, NJ Bunin, A Chew, VE Gonzalez, Z Zheng, SF Lacey, YD Mahnke, JJ Melenhorst, SR Rheingold, A Shen, DT Teachey, BL Levine, CH June, DL Porter, SA Grupp. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371(16): 1507–1517
https://doi.org/10.1056/NEJMoa1407222
pmid: 25317870
|
102 |
A Avigdor, R Shouval, E Jacoby, T Davidson, A Shimoni, M Besser, A Nagler. CAR T cells induce a complete response in refractory Burkitt lymphoma. Bone Marrow Transplant 2018; 53(12): 1583–1585
https://doi.org/10.1038/s41409-018-0235-0
pmid: 29795432
|
103 |
ML Wang, J Munoz, A Goy, FL Locke, CA Jacobson, BT Hill, JM Timmerman, H Holmes, S Jaglowski, IW Flinn, PA McSweeney, DB Miklos, JM Pagel, MJ Kersten, W Peng, L Zheng, JM Rossi, RK Jain, AV Rao, PM Reagan. KTE-X19, an anti-CD19 chimeric antigen receptor (CAR) T cell therapy, in patients (Pts) with relapsed/refractory (R/R) mantle cell lymphoma (MCL): results of the phase 2 ZUMA-2 study. Blood 2019; 134(Supplement_1): 754
https://doi.org/10.1182/blood-2019-126064
|
104 |
E Liu, D Marin, P Banerjee, HA Macapinlac, P Thompson, R Basar, L Nassif Kerbauy, B Overman, P Thall, M Kaplan, V Nandivada, I Kaur, A Nunez Cortes, K Cao, M Daher, C Hosing, EN Cohen, P Kebriaei, R Mehta, S Neelapu, Y Nieto, M Wang, W Wierda, M Keating, R Champlin, EJ Shpall, K Rezvani. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med 2020; 382(6): 545–553
https://doi.org/10.1056/NEJMoa1910607
pmid: 32023374
|
105 |
J Cao, H Cheng, M Shi, G Wang, W Chen, K Qi, H Li, J Qiao, J Zhao, Q Wu, L Zeng, G Jing, J Zheng, K Xu. Humanized CD19-specific chimeric antigen-receptor T-cells in 2 adults with newly diagnosed B-cell acute lymphoblastic leukemia. Leukemia 2019; 33(11): 2751–2753
https://doi.org/10.1038/s41375-019-0516-7
pmid: 31308471
|
106 |
G Ma, J Shen, K Pinz, M Wada, J Park, S Kim, T Togano, W Tse. Targeting T cell malignancies using CD4CAR T-cells and implementing a natural safety switch. Stem Cell Rev Rep 2019; 15(3): 443–447
https://doi.org/10.1007/s12015-019-09876-5
pmid: 30826931
|
107 |
D Gomes-Silva, M Srinivasan, S Sharma, CM Lee, DL Wagner, TH Davis, RH Rouce, G Bao, MK Brenner, M Mamonkin. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 2017; 130(3): 285–296
https://doi.org/10.1182/blood-2017-01-761320
pmid: 28539325
|
108 |
YT Png, N Vinanica, T Kamiya, N Shimasaki, E Coustan-Smith, D Campana. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Adv 2017; 1(25): 2348–2360
https://doi.org/10.1182/bloodadvances.2017009928
pmid: 29296885
|
109 |
M Byrne, OO Oluwole, B Savani, NS Majhail, BT Hill, FL Locke. Understanding and managing large B cell lymphoma relapses after chimeric antigen receptor T cell therapy. Biol Blood Marrow Transplant 2019; 25(11): e344–e351
https://doi.org/10.1016/j.bbmt.2019.06.036
pmid: 31279751
|
110 |
AJ Walker, RG Majzner, L Zhang, K Wanhainen, AH Long, SM Nguyen, P Lopomo, M Vigny, TJ Fry, RJ Orentas, CL Mackall. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol Ther 2017; 25(9): 2189–2201
https://doi.org/10.1016/j.ymthe.2017.06.008
pmid: 28676342
|
111 |
K Watanabe, S Terakura, AC Martens, T van Meerten, S Uchiyama, M Imai, R Sakemura, T Goto, R Hanajiri, N Imahashi, K Shimada, A Tomita, H Kiyoi, T Nishida, T Naoe, M Murata. Target antigen density governs the efficacy of anti-CD20-CD28-CD3z chimeric antigen receptor-modified effector CD8+ T cells. J Immunol 2015; 194(3): 911–920
https://doi.org/10.4049/jimmunol.1402346
pmid: 25520398
|
112 |
HG Caruso, LV Hurton, A Najjar, D Rushworth, S Ang, S Olivares, T Mi, K Switzer, H Singh, H Huls, DA Lee, AB Heimberger, RE Champlin, LJ Cooper. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res 2015; 75(17): 3505–3518
https://doi.org/10.1158/0008-5472.CAN-15-0139
pmid: 26330164
|
113 |
F Turatti, M Figini, E Balladore, P Alberti, P Casalini, JD Marks, S Canevari, D Mezzanzanica. Redirected activity of human antitumor chimeric immune receptors is governed by antigen and receptor expression levels and affinity of interaction. J Immunother 2007; 30(7): 684–693
https://doi.org/10.1097/CJI.0b013e3180de5d90
pmid: 17893561
|
114 |
Z Ying, XF Huang, X Xiang, Y Liu, X Kang, Y Song, X Guo, H Liu, N Ding, T Zhang, P Duan, Y Lin, W Zheng, X Wang, N Lin, M Tu, Y Xie, C Zhang, W Liu, L Deng, S Gao, L Ping, X Wang, N Zhou, J Zhang, Y Wang, S Lin, M Mamuti, X Yu, L Fang, S Wang, H Song, G Wang, L Jones, J Zhu, SY Chen. A safe and potent anti-CD19 CAR T cell therapy. Nat Med 2019; 25(6): 947–953
https://doi.org/10.1038/s41591-019-0421-7
pmid: 31011207
|
115 |
N Wang, X Hu, W Cao, C Li, Y Xiao, Y Cao, C Gu, S Zhang, L Chen, J Cheng, G Wang, X Zhou, M Zheng, X Mao, L Jiang, D Wang, Q Wang, Y Lou, H Cai, D Yan, Y Zhang, T Zhang, J Zhou, L Huang. Efficacy and safety of CAR19/22 T-cell “Cocktail” therapy in patients with refractory/ relapsed B-cell malignancies. Blood 2020; 135(1): 17– 27
https://doi.org/10.1182/blood.2019000017
pmid: 31697824
|
116 |
J Pan, S Zuo, B Deng, X Xu, C Li, Q Zheng, Z Ling, W Song, J Xu, J Duan, Z Wang, X Yu, AH Chang, X Feng, C Tong. Sequential CD19-22 CAR T therapy induces sustained remission in children with r/r B-ALL. Blood 2020; 135(5): 387–391
https://doi.org/DOI: 10.1182/blood.2019003293
pmid: 31725148
|
117 |
M Ruella, DM Barrett, SS Kenderian, O Shestova, TJ Hofmann, J Perazzelli, M Klichinsky, V Aikawa, F Nazimuddin, M Kozlowski, J Scholler, SF Lacey, JJ Melenhorst, JJ Morrissette, DA Christian, CA Hunter, M Kalos, DL Porter, CH June, SA Grupp, S Gill. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest 2016; 126(10): 3814–3826
https://doi.org/10.1172/JCI87366
pmid: 27571406
|
118 |
Z Grada, M Hegde, T Byrd, DR Shaffer, A Ghazi, VS Brawley, A Corder, K Schönfeld, J Koch, G Dotti, HE Heslop, S Gottschalk, WS Wels, ML Baker, N Ahmed. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids 2013; 2: e105
https://doi.org/10.1038/mtna.2013.32
pmid: 23839099
|
119 |
H Jia, Z Wang, Y Wang, Y Liu, H Dai, C Tong, Y Guo, B Guo, D Ti, X Han, Q Yang, Z Wu, W Han. Haploidentical CD19/CD22 bispecific CAR-T cells induced MRD-negative remission in a patient with relapsed and refractory adult B-ALL after haploidentical hematopoietic stem cell transplantation. J Hematol Oncol 2019; 12(1): 57
https://doi.org/10.1186/s13045-019-0741-6
pmid: 31182121
|
120 |
H Zhao, Y Hu, A Nagler, AH Chang, H Huang. CD19/CD22 dual targeted (chimeric antigen receptor) CAR-T therapy for relapsed or refractory (R/R) B-cell non-Hodgkin lymphoma (B-NHL). The 46th Annual Meeting of the EBMT. Abstract #O038. 2020
|
121 |
NN Shah, F Zhu, D Schneider, C Taylor, W Krueger, A Worden, WL Longo, M Hamadani, T Fenske, B Johnson, B Dropulic, R Orentas, P Hari. Results of a phase I study of bispecific anti-CD19, anti-CD20 chimeric antigen receptor (CAR) modified T cells for relapsed, refractory, non-Hodgkin lymphoma. J Clin Oncol 2019; 37(15_suppl): 2510
https://doi.org/10.1200/JCO.2019.37.15_suppl.2510
|
122 |
ZX Yan, L Li, W Wang, BS OuYang, S Cheng, L Wang, W Wu, PP Xu, M Muftuoglu, M Hao, S Yang, MC Zhang, Z Zheng, J Li, WL Zhao. Clinical efficacy and tumor microenvironment influence in a dose-escalation study of anti-CD19 chimeric antigen receptor T cells in refractory B-cell non-Hodgkin’s lymphoma. Clin Cancer Res 2019; 25(23): 6995–7003
https://doi.org/10.1158/1078-0432.CCR-19-0101
pmid: 31444250
|
123 |
EJ Wherry, M Kurachi. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 2015; 15(8): 486–499
https://doi.org/10.1038/nri3862
pmid: 26205583
|
124 |
SN Zolov, SP Rietberg, CL Bonifant. Programmed cell death protein 1 activation preferentially inhibits CD28.CAR-T cells. Cytotherapy 2018; 20(10): 1259–1266
https://doi.org/10.1016/j.jcyt.2018.07.005
pmid: 30309710
|
125 |
H Wang, G Kaur, AI Sankin, F Chen, F Guan, X Zang. Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. J Hematol Oncol 2019; 12(1): 59
https://doi.org/10.1186/s13045-019-0746-1
pmid: 31186046
|
126 |
EA Chong, JJ Melenhorst, SF Lacey, DE Ambrose, V Gonzalez, BL Levine, CH June, SJ Schuster. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood 2017; 129(8): 1039–1041
https://doi.org/10.1182/blood-2016-09-738245
pmid: 28031179
|
127 |
BT Hill, ZJ Roberts, A Xue, JM Rossi, MR Smith. Rapid tumor regression from PD-1 inhibition after anti-CD19 chimeric antigen receptor T-cell therapy in refractory diffuse large B-cell lymphoma. Bone Marrow Transplant 2020; 55(6): 1184–1187
https://doi.org/10.1038/s41409-019-0657-3
pmid: 31471571
|
128 |
ER Suarez, K Chang, J Sun, J Sui, GJ Freeman, S Signoretti, Q Zhu, WA Marasco. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget 2016; 7(23): 34341–34355
https://doi.org/10.18632/oncotarget.9114
pmid: 27145284
|
129 |
W Zhao, L Jia, M Zhang, X Huang, P Qian, Q Tang, J Zhu, Z Feng. The killing effect of novel bi-specific Trop2/PD-L1 CAR-T cell targeted gastric cancer. Am J Cancer Res 2019; 9(8): 1846–1856
pmid: 31497363
|
130 |
AL Garfall, EA Stadtmauer, WT Hwang, SF Lacey, JJ Melenhorst, M Krevvata, MP Carroll, WH Matsui, Q Wang, MV Dhodapkar, K Dhodapkar, R Das, DT Vogl, BM Weiss, AD Cohen, PA Mangan, EC Ayers, S Nunez-Cruz, I Kulikovskaya, MM Davis, A Lamontagne, K Dengel, ND Kerr, RM Young, DL Siegel, BL Levine, MC Milone, MV Maus, CH June. Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight 2018; 3(8): e120505
https://doi.org/10.1172/jci.insight.120505
pmid: 29669947
|
131 |
CS Sauter, B Senechal, I Rivière, A Ni, Y Bernal, X Wang, T Purdon, M Hall, AN Singh, VZ Szenes, S Yoo, A Dogan, Y Wang, CH Moskowitz, S Giralt, MJ Matasar, MA Perales, KJ Curran, J Park, M Sadelain, RJ Brentjens. CD19 CAR T cells following autologous transplantation in poor-risk relapsed and refractory B-cell non-Hodgkin lymphoma. Blood 2019; 134(7): 626–635
https://doi.org/10.1182/blood.2018883421
pmid: 31262783
|
132 |
C DeSelm, ML Palomba, J Yahalom, M Hamieh, J Eyquem, VK Rajasekhar, M Sadelain. Low-dose radiation conditioning enables CAR T cells to mitigate antigen escape. Mol Ther 2018; 26(11): 2542–2552
https://doi.org/10.1016/j.ymthe.2018.09.008
pmid: 30415658
|
133 |
AJ Sim, MD Jain, NB Figura, JC Chavez, BD Shah, F Khimani, A Lazaryan, G Krivenko, ML Davila, HD Liu, AD Falchook, S Dahiya, AP Rapoport, S Kim, FL Locke, TJ Robinson. Radiation therapy as a bridging strategy for CAR T cell therapy with axicabtagene ciloleucel in diffuse large B-cell lymphoma. Int J Radiat Oncol Biol Phys 2019; 105(5): 1012–1021
https://doi.org/10.1016/j.ijrobp.2019.05.065
pmid: 31175906
|
134 |
K Mestermann, T Giavridis, J Weber, J Rydzek, S Frenz, T Nerreter, A Mades, M Sadelain, H Einsele, M Hudecek. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med 2019; 11(499): eaau5907
https://doi.org/10.1126/scitranslmed.aau5907
pmid: 31270272
|
135 |
EW Weber, RC Lynn, E Sotillo, J Lattin, P Xu, CL Mackall. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv 2019; 3(5): 711–717
https://doi.org/10.1182/bloodadvances.2018028720
pmid: 30814055
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|