Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (6) : 711-725    https://doi.org/10.1007/s11684-020-0808-3
REVIEW
A giant step forward: chimeric antigen receptor T-cell therapy for lymphoma
Houli Zhao1,2,3, Yiyun Wang1,2,3, Elaine Tan Su Yin1,2,3, Kui Zhao4, Yongxian Hu1,2,3(), He Huang1,2,3()
1. Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
2. Zhejiang Province Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310000, China
3. Institute of Hematology, Zhejiang University, Hangzhou 310000, China
4. PET-CT Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
 Download: PDF(464 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The combination of the immunotherapy (i.e., the use of monoclonal antibodies) and the conventional chemotherapy increases the long-term survival of patients with lymphoma. However, for patients with relapsed or treatment-resistant lymphoma, a novel treatment approach is urgently needed. Chimeric antigen receptor T (CAR-T) cells were introduced as a treatment for these patients. Based on recent clinical data, approximately 50% of patients with relapsed or refractory B-cell lymphoma achieved complete remission after receiving the CD19 CAR-T cell therapy. Moreover, clinical data revealed that some patients remained in remission for more than two years after the CAR-T cell therapy. Other than the CD19-targeted CAR-T, the novel target antigens, such as CD20, CD22, CD30, and CD37, which were greatly expressed on lymphoma cells, were studied under preclinical and clinical evaluations for use in the treatment of lymphoma. Nonetheless, the CAR-T therapy was usually associated with potentially lethal adverse effects, such as the cytokine release syndrome and the neurotoxicity. Therefore, optimizing the structure of CAR, creating new drugs, and combining CAR-T cell therapy with stem cell transplantation are potential solutions to increase the effectiveness of treatment and reduce the toxicity in patients with lymphoma after the CAR-T cell therapy.

Keywords chimeric antigen receptor T (CAR-T) cell      lymphoma      cytokine release syndrome (CRS)      immune effector cell-associated neurotoxicity syndrome (ICANS)     
Corresponding Author(s): Yongxian Hu,He Huang   
Just Accepted Date: 27 October 2020   Online First Date: 26 November 2020    Issue Date: 24 December 2020
 Cite this article:   
Houli Zhao,Yiyun Wang,Elaine Tan Su Yin, et al. A giant step forward: chimeric antigen receptor T-cell therapy for lymphoma[J]. Front. Med., 2020, 14(6): 711-725.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0808-3
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I6/711
Fig.1  Generation of CAR structures. (A) First-generation CARs contain antigen-recognizing (scFv), transmembrane, and T cell activation (CD3z) domains. (B) Second-generation CARs, to which the costimulatory domains (CD28 or 4-1BB) are added with respect to the first-generation CAR, show high levels of antitumor activity. (C) Third-generation CARs include two costimulatory domains (CD28 and 4-1BB).
Fig.2  Process of CAR-T cell therapy in clinics. Lymphocytes were collected from patients or donors via the leukapheresis. After T cell enrichment and activation, the CAR gene was transduced into T cells. The CAR-T cells were expanded adequately ex vivo for clinical use. Patients normally received the lymphodepleting chemotherapy prior to the CAR-T cell infusion.
1 WHO. WHO classification of tumours of haematopoietic and lymphoid tissue. 4th ed. Geneva: World Health Organization, 2008
2 RL Siegel, KD Miller, A Jemal. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7–34
https://doi.org/10.3322/caac.21551 pmid: 30620402
3 Y Zhang, J Tuo, R Zheng, S Zhang, M Zhang, G Li, N Yang, W Lu, W Chen. An analysis of incidence and mortality of malignant lymphoma in China, 2009. China Cancer 2013; 22: 338–343
4 GP Canellos, JR Anderson, KJ Propert, N Nissen, MR Cooper, ES Henderson, MR Green, A Gottlieb, BA Peterson. Chemotherapy of advanced Hodgkin’s disease with MOPP, ABVD, or MOPP alternating with ABVD. N Engl J Med 1992; 327(21): 1478–1484
https://doi.org/10.1056/NEJM199211193272102 pmid: 1383821
5 B Coiffier, C Thieblemont, E Van Den Neste, G Lepeu, I Plantier, S Castaigne, S Lefort, G Marit, M Macro, C Sebban, K Belhadj, D Bordessoule, C Fermé, H Tilly. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood 2010; 116(12): 2040–2045
https://doi.org/10.1182/blood-2010-03-276246 pmid: 20548096
6 M Pfreundschuh, E Kuhnt, L Trümper, A Osterborg, M Trneny, L Shepherd, DS Gill, J Walewski, R Pettengell, U Jaeger, PL Zinzani, O Shpilberg, S Kvaloy, P de Nully Brown, R Stahel, N Milpied, A López-Guillermo, V Poeschel, S Grass, M Loeffler, N, MabThera International Trial (MInT) Group Murawski. CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group. Lancet Oncol 2011; 12(11): 1013–1022
https://doi.org/10.1016/S1470-2045(11)70235-2 pmid: 21940214
7 JO Armitage, RD Gascoyne, MA Lunning, F Cavalli. Non-Hodgkin lymphoma. Lancet 2017; 390(10091): 298–310
https://doi.org/10.1016/S0140-6736(16)32407-2 pmid: 28153383
8 Y Hu, Z Wu, Y Luo, J Shi, J Yu, C Pu, Z Liang, G Wei, Q Cui, J Sun, J Jiang, J Xie, Y Tan, W Ni, J Tu, J Wang, A Jin, H Zhang, Z Cai, L Xiao, H Huang. Potent anti-leukemia activities of chimeric antigen receptor-modified T cells against CD19 in Chinese patients with relapsed/refractory acute lymphocytic leukemia. Clin Cancer Res 2017; 23(13): 3297–3306
https://doi.org/10.1158/1078-0432.CCR-16-1799 pmid: 28039267
9 KT Mueller, E Waldron, SA Grupp, JE Levine, TW Laetsch, MA Pulsipher, MW Boyer, KJ August, J Hamilton, R Awasthi, AM Stein, D Sickert, A Chakraborty, BL Levine, CH June, L Tomassian, SS Shah, M Leung, T Taran, PA Wood, SL Maude. Clinical pharmacology of tisagenlecleucel in B-cell acute lymphoblastic leukemia. Clin Cancer Res 2018; 24(24): 6175–6184
https://doi.org/10.1158/1078-0432.CCR-18-0758 pmid: 30190371
10 JN Kochenderfer, ME Dudley, SH Kassim, RP Somerville, RO Carpenter, M Stetler-Stevenson, JC Yang, GQ Phan, MS Hughes, RM Sherry, M Raffeld, S Feldman, L Lu, YF Li, LT Ngo, A Goy, T Feldman, DE Spaner, ML Wang, CC Chen, SM Kranick, A Nath, DA Nathan, KE Morton, MA Toomey, SA Rosenberg. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 2015; 33(6): 540–549
https://doi.org/10.1200/JCO.2014.56.2025 pmid: 25154820
11 SJ Schuster, MR Bishop, CS Tam, EK Waller, P Borchmann, JP McGuirk, U Jäger, S Jaglowski, C Andreadis, JR Westin, I Fleury, V Bachanova, SR Foley, PJ Ho, S Mielke, JM Magenau, H Holte, S Pantano, LB Pacaud, R Awasthi, J Chu, Ö Anak, G Salles, RT, Maziarz   JULIET Investigators. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2019; 380(1): 45–56
https://doi.org/10.1056/NEJMoa1804980 pmid: 30501490
12 FL Locke, A Ghobadi, CA Jacobson, DB Miklos, LJ Lekakis, OO Oluwole, Y Lin, I Braunschweig, BT Hill, JM Timmerman, A Deol, PM Reagan, P Stiff, IW Flinn, U Farooq, A Goy, PA McSweeney, J Munoz, T Siddiqi, JC Chavez, AF Herrera, NL Bartlett, JS Wiezorek, L Navale, A Xue, Y Jiang, A Bot, JM Rossi, JJ Kim, WY Go, SS Neelapu. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol 2019; 20(1): 31–42
https://doi.org/10.1016/S1470-2045(18)30864-7 pmid: 30518502
13 D Campana, H Schwarz, C Imai. 4-1BB chimeric antigen receptors. Cancer J 2014; 20(2): 134–140
https://doi.org/10.1097/PPO.0000000000000028 pmid: 24667959
14 G Gross, T Waks, Z Eshhar. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989; 86(24): 10024–10028
https://doi.org/10.1073/pnas.86.24.10024 pmid: 2513569
15 Y Kuwana, Y Asakura, N Utsunomiya, M Nakanishi, Y Arata, S Itoh, F Nagase, Y Kurosawa. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun 1987; 149(3): 960–968
https://doi.org/10.1016/0006-291X(87)90502-X pmid: 3122749
16 Z Eshhar, T Waks, G Gross, DG Schindler. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993; 90(2): 720–724
https://doi.org/10.1073/pnas.90.2.720 pmid: 8421711
17 RJ Brentjens, JB Latouche, E Santos, F Marti, MC Gong, C Lyddane, PD King, S Larson, M Weiss, I Rivière, M Sadelain. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 2003; 9(3): 279–286
https://doi.org/10.1038/nm827 pmid: 12579196
18 J Maher, RJ Brentjens, G Gunset, I Rivière, M Sadelain. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ /CD28 receptor. Nat Biotechnol 2002; 20(1): 70–75
https://doi.org/10.1038/nbt0102-70 pmid: 11753365
19 C Imai, K Mihara, M Andreansky, IC Nicholson, CH Pui, TL Geiger, D Campana. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004; 18(4): 676–684
https://doi.org/10.1038/sj.leu.2403302 pmid: 14961035
20 JN Kochenderfer, WH Wilson, JE Janik, ME Dudley, M Stetler-Stevenson, SA Feldman, I Maric, M Raffeld, DA Nathan, BJ Lanier, RA Morgan, SA Rosenberg. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010; 116(20): 4099–4102
https://doi.org/10.1182/blood-2010-04-281931 pmid: 20668228
21 MA Pulè, KC Straathof, G Dotti, HE Heslop, CM Rooney, MK Brenner. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 2005; 12(5): 933–941
https://doi.org/10.1016/j.ymthe.2005.04.016 pmid: 15979412
22 J Wang, M Jensen, Y Lin, X Sui, E Chen, CG Lindgren, B Till, A Raubitschek, SJ Forman, X Qian, S James, P Greenberg, S Riddell, OW Press. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 2007; 18(8): 712–725
https://doi.org/10.1089/hum.2007.028 pmid: 17685852
23 S Wilkie, G Picco, J Foster, DM Davies, S Julien, L Cooper, S Arif, SJ Mather, J Taylor-Papadimitriou, JM Burchell, J Maher. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 2008; 180(7): 4901–4909
https://doi.org/10.4049/jimmunol.180.7.4901 pmid: 18354214
24 C Carpenito, MC Milone, R Hassan, JC Simonet, M Lakhal, MM Suhoski, A Varela-Rohena, KM Haines, DF Heitjan, SM Albelda, RG Carroll, JL Riley, I Pastan, CH June. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 2009; 106(9): 3360–3365
https://doi.org/10.1073/pnas.0813101106 pmid: 19211796
25 S Tammana, X Huang, M Wong, MC Milone, L Ma, BL Levine, CH June, JE Wagner, BR Blazar, X Zhou. 4-1BB and CD28 signaling plays a synergistic role in redirecting umbilical cord blood T cells against B-cell malignancies. Hum Gene Ther 2010; 21(1): 75–86
https://doi.org/10.1089/hum.2009.122 pmid: 19719389
26 XS Zhong, M Matsushita, J Plotkin, I Riviere, M Sadelain. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol Ther 2010; 18(2): 413–420
https://doi.org/10.1038/mt.2009.210 pmid: 19773745
27 AA Hombach, M Chmielewski, G Rappl, H Abken. Adoptive immunotherapy with redirected T cells produces CCR7− cells that are trapped in the periphery and benefit from combined CD28-OX40 costimulation. Hum Gene Ther 2013; 24(3): 259–269
https://doi.org/10.1089/hum.2012.247 pmid: 23350854
28 CP Duong, JA Westwood, CS Yong, A Murphy, C Devaud, LB John, PK Darcy, MH Kershaw. Engineering T cell function using chimeric antigen receptors identified using a DNA library approach. PLoS One 2013; 8(5): e63037
https://doi.org/10.1371/journal.pone.0063037 pmid: 23667569
29 BG Till, MC Jensen, J Wang, X Qian, AK Gopal, DG Maloney, CG Lindgren, Y Lin, JM Pagel, LE Budde, A Raubitschek, SJ Forman, PD Greenberg, SR Riddell, OW Press. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 2012; 119(17): 3940–3950
https://doi.org/10.1182/blood-2011-10-387969 pmid: 22308288
30 Y Chen, C Sun, E Landoni, L Metelitsa, G Dotti, B Savoldo. Eradication of neuroblastoma by T cells redirected with an optimized GD2-specific chimeric antigen receptor and interleukin-15. Clin Cancer Res 2019; 25(9): 2915–2924
https://doi.org/10.1158/1078-0432.CCR-18-1811 pmid: 30617136
31 Z Zhao, M Condomines, SJC van der Stegen, F Perna, CC Kloss, G Gunset, J Plotkin, M Sadelain. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 2015; 28(4): 415–428
https://doi.org/10.1016/j.ccell.2015.09.004 pmid: 26461090
32 I Diaconu, B Ballard, M Zhang, Y Chen, J West, G Dotti, B Savoldo. Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T cells. Mol Ther 2017; 25(3): 580–592
https://doi.org/10.1016/j.ymthe.2017.01.011 pmid: 28187946
33 R Sakemura, S Terakura, K Watanabe, J Julamanee, E Takagi, K Miyao, D Koyama, T Goto, R Hanajiri, T Nishida, M Murata, H Kiyoi. A Tet-On inducible system for controlling CD19-chimeric antigen receptor expression upon drug administration. Cancer Immunol Res 2016; 4(8): 658–668
https://doi.org/10.1158/2326-6066.CIR-16-0043 pmid: 27329987
34 J Zhao, Q Lin, Y Song, D Liu. Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol 2018; 11(1): 132
https://doi.org/10.1186/s13045-018-0677-2 pmid: 30482221
35 JH Cho, JJ Collins, WW Wong. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 2018; 173(6): 1426–1438.e11
https://doi.org/10.1016/j.cell.2018.03.038 pmid: 29706540
36 K Urbanska, E Lanitis, M Poussin, RC Lynn, BP Gavin, S Kelderman, J Yu, N Scholler, DJ Powell Jr. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res 2012; 72(7): 1844–1852
https://doi.org/10.1158/0008-5472.CAN-11-3890 pmid: 22315351
37 D Liu, J Zhao, Y Song. Engineering switchable and programmable universal CARs for CAR T therapy. J Hematol Oncol 2019; 12(1): 69
https://doi.org/10.1186/s13045-019-0763-0 pmid: 31272471
38 MS Kim, JS Ma, H Yun, Y Cao, JY Kim, V Chi, D Wang, A Woods, L Sherwood, D Caballero, J Gonzalez, PG Schultz, TS Young, CH Kim. Redirection of genetically engineered CAR-T cells using bifunctional small molecules. J Am Chem Soc 2015; 137(8): 2832–2835
https://doi.org/10.1021/jacs.5b00106 pmid: 25692571
39 CF Hung, X Xu, L Li, Y Ma, Q Jin, A Viley, C Allen, P Natarajan, R Shivakumar, MV Peshwa, LA Emens. Development of anti-human mesothelin-targeted chimeric antigen receptor messenger RNA-transfected peripheral blood lymphocytes for ovarian cancer therapy. Hum Gene Ther 2018; 29(5): 614–625
https://doi.org/10.1089/hum.2017.080 pmid: 29334771
40 DL Crossland, WL Denning, S Ang, S Olivares, T Mi, K Switzer, H Singh, H Huls, KS Gold, BS Glisson, LJ Cooper, JV Heymach. Antitumor activity of CD56-chimeric antigen receptor T cells in neuroblastoma and SCLC models. Oncogene 2018; 37(27): 3686–3697
https://doi.org/10.1038/s41388-018-0187-2 pmid: 29622795
41 P Kebriaei, H Singh, MH Huls, MJ Figliola, R Bassett, S Olivares, B Jena, MJ Dawson, PR Kumaresan, S Su, S Maiti, J Dai, B Moriarity, MA Forget, V Senyukov, A Orozco, T Liu, J McCarty, RN Jackson, JS Moyes, G Rondon, M Qazilbash, S Ciurea, A Alousi, Y Nieto, K Rezvani, D Marin, U Popat, C Hosing, EJ Shpall, H Kantarjian, M Keating, W Wierda, KA Do, DA Largaespada, DA Lee, PB Hackett, RE Champlin, LJ Cooper. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest 2016; 126(9): 3363–3376
https://doi.org/10.1172/JCI86721 pmid: 27482888
42 CJ Turtle, C Berger, D Sommermeyer, LA Hanafi, B Pender, EM Robinson, K Melville, TM Budiarto, NN Steevens, C Chaney, S Cherian, BL Wood, L Soma, X Chen, S Heimfeld, MC Jensen, SR Riddell, DG Maloney. Anti-CD19 chimeric antigen receptor-modified T cell therapy for B cell non-Hodgkin lymphoma and chronic lymphocytic leukemia: fludarabine and cyclophosphamide lymphodepletion improves in vivo expansion and persistence of CAR-T cells and clinical outcomes. Blood 2015; 126(23): 184
https://doi.org/10.1182/blood.V126.23.184.184
43 A Heczey, CU Louis, B Savoldo, O Dakhova, A Durett, B Grilley, H Liu, MF Wu, Z Mei, A Gee, B Mehta, H Zhang, N Mahmood, H Tashiro, HE Heslop, G Dotti, CM Rooney, MK Brenner. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol Ther 2017; 25(9): 2214–2224
https://doi.org/10.1016/j.ymthe.2017.05.012 pmid: 28602436
44 S Ninomiya, N Narala, L Huye, S Yagyu, B Savoldo, G Dotti, HE Heslop, MK Brenner, CM Rooney, CA Ramos. Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood 2015; 125(25): 3905–3916
https://doi.org/10.1182/blood-2015-01-621474 pmid: 25940712
45 AV Hirayama, J Gauthier, KA Hay, JM Voutsinas, Q Wu, T Gooley, D Li, S Cherian, X Chen, BS Pender, RM Hawkins, A Vakil, RN Steinmetz, UH Acharya, RD Cassaday, AG Chapuis, TM Dhawale, PC Hendrie, HP Kiem, RC Lynch, J Ramos, M Shadman, BG Till, SR Riddell, DG Maloney, CJ Turtle. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood 2019; 133(17): 1876–1887
https://doi.org/10.1182/blood-2018-11-887067 pmid: 30782611
46 JS Boomer, JM Green. An enigmatic tail of CD28 signaling. Cold Spring Harb Perspect Biol 2010; 2(8): a002436
https://doi.org/10.1101/cshperspect.a002436 pmid: 20534709
47 C Chester, MF Sanmamed, J Wang, I Melero. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 2018; 131(1): 49–57
https://doi.org/10.1182/blood-2017-06-741041 pmid: 29118009
48 OU Kawalekar, RS O’Connor, JA Fraietta, L Guo, SE McGettigan, AD Posey Jr, PR Patel, S Guedan, J Scholler, B Keith, NW Snyder, IA Blair, MC Milone, CH June. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 2016; 44(2): 380–390
https://doi.org/10.1016/j.immuni.2016.01.021 pmid: 26885860
49 J Wang, OW Press, CG Lindgren, P Greenberg, S Riddell, X Qian, C Laugen, A Raubitschek, SJ Forman, MC Jensen. Cellular immunotherapy for follicular lymphoma using genetically modified CD20-specific CD8+ cytotoxic T lymphocytes. Mol Ther 2004; 9(4): 577–586
https://doi.org/10.1016/j.ymthe.2003.12.011 pmid: 15093188
50 SE James, NN Orgun, TF Tedder, MJ Shlomchik, MC Jensen, Y Lin, PD Greenberg, OW Press. Antibody-mediated B-cell depletion before adoptive immunotherapy with T cells expressing CD20-specific chimeric T-cell receptors facilitates eradication of leukemia in immunocompetent mice. Blood 2009; 114(27): 5454–5463
https://doi.org/10.1182/blood-2009-08-232967 pmid: 19880489
51 WY Zhang, Y Liu, Y Wang, CM Wang, QM Yang, HL Zhu, WD Han. Long-term safety and efficacy of CART-20 cells in patients with refractory or relapsed B-cell non-Hodgkin lymphoma: 5-years follow-up results of the phase I and IIa trials. Signal Transduct Target Ther 2017; 2(1): 17054
https://doi.org/10.1038/sigtrans.2017.54 pmid: 29263931
52 W Haso, DW Lee, NN Shah, M Stetler-Stevenson, CM Yuan, IH Pastan, DS Dimitrov, RA Morgan, DJ FitzGerald, DM Barrett, AS Wayne, CL Mackall, RJ Orentas. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 2013; 121(7): 1165–1174
https://doi.org/10.1182/blood-2012-06-438002 pmid: 23243285
53 H Shalabi, PL Wolters, S Martin, MA Toledo-Tamula, MC Roderick, K Struemph, E Kane, B Yates, C Delbrook, CL Mackall, DW Lee, TJ Fry, NN Shah. Systematic evaluation of neurotoxicity in children and young adults undergoing CD22 chimeric antigen receptor T-cell therapy. J Immunother 2018; 41(7): 350–358
https://doi.org/10.1097/CJI.0000000000000241 pmid: 30048343
54 TJ Fry, NN Shah, RJ Orentas, M Stetler-Stevenson, CM Yuan, S Ramakrishna, P Wolters, S Martin, C Delbrook, B Yates, H Shalabi, TJ Fountaine, JF Shern, RG Majzner, DF Stroncek, M Sabatino, Y Feng, DS Dimitrov, L Zhang, S Nguyen, H Qin, B Dropulic, DW Lee, CL Mackall. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 2018; 24(1): 20–28
https://doi.org/10.1038/nm.4441 pmid: 29155426
55 H Dürkop, U Latza, M Hummel, F Eitelbach, B Seed, H Stein. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 1992; 68(3): 421–427
https://doi.org/10.1016/0092-8674(92)90180-K pmid: 1310894
56 JM Pierce, A Mehta. Diagnostic, prognostic and therapeutic role of CD30 in lymphoma. Expert Rev Hematol 2017; 10(1): 29–37
https://doi.org/10.1080/17474086.2017.1270202 pmid: 27927047
57 R Horie, T Watanabe. CD30: expression and function in health and disease. Semin Immunol 1998; 10(6): 457–470
https://doi.org/10.1006/smim.1998.0156 pmid: 9826579
58 B Falini, S Pileri, G Pizzolo, H Dürkop, L Flenghi, F Stirpe, MF Martelli, H Stein. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood 1995; 85(1): 1–14
https://doi.org/10.1182/blood.V85.1.1.bloodjournal8511 pmid: 7803786
59 A Hombach, C Heuser, R Sircar, T Tillmann, V Diehl, C Pohl, H Abken. An anti-CD30 chimeric receptor that mediates CD3-ζ-independent T-cell activation against Hodgkin’s lymphoma cells in the presence of soluble CD30. Cancer Res 1998; 58(6): 1116–1119
pmid: 9515791
60 B Savoldo, CM Rooney, A Di Stasi, H Abken, A Hombach, AE Foster, L Zhang, HE Heslop, MK Brenner, G Dotti. Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30ζ artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 2007; 110(7): 2620–2630
https://doi.org/10.1182/blood-2006-11-059139 pmid: 17507664
61 CA Ramos, B Ballard, H Zhang, O Dakhova, AP Gee, Z Mei, M Bilgi, MF Wu, H Liu, B Grilley, CM Bollard, BH Chang, CM Rooney, MK Brenner, HE Heslop, G Dotti, B Savoldo. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J Clin Invest 2017; 127(9): 3462–3471
https://doi.org/10.1172/JCI94306 pmid: 28805662
62 CM Wang, ZQ Wu, Y Wang, YL Guo, HR Dai, XH Wang, X Li, YJ Zhang, WY Zhang, MX Chen, Y Zhang, KC Feng, Y Liu, SX Li, QM Yang, WD Han. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res 2017; 23(5): 1156–1166
https://doi.org/10.1158/1078-0432.CCR-16-1365 pmid: 27582488
63 S Barrena, J Almeida, M Yunta, A López, N Fernández-Mosteirín, M Giralt, M Romero, L Perdiguer, M Delgado, A Orfao, PA Lazo. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia 2005; 19(8): 1376–1383
https://doi.org/10.1038/sj.leu.2403822 pmid: 15931266
64 DS Pereira, CI Guevara, L Jin, N Mbong, A Verlinsky, SJ Hsu, H Aviña, S Karki, JD Abad, P Yang, SJ Moon, F Malik, MY Choi, Z An, K Morrison, PM Challita-Eid, F Doñate, IB Joseph, TJ Kipps, JE Dick, DR Stover. AGS67E, an anti-CD37 monomethyl auristatin E antibody-drug conjugate as a potential therapeutic for B/T-cell malignancies and AML: a new role for CD37 in AML. Mol Cancer Ther 2015; 14(7): 1650–1660
https://doi.org/10.1158/1535-7163.MCT-15-0067 pmid: 25934707
65 I Scarfò, M Ormhøj, MJ Frigault, AP Castano, S Lorrey, AA Bouffard, A van Scoyk, SJ Rodig, AJ Shay, JC Aster, FI Preffer, DM Weinstock, MV Maus. Anti-CD37 chimeric antigen receptor T cells are active against B- and T-cell lymphomas. Blood 2018; 132(14): 1495–1506
https://doi.org/10.1182/blood-2018-04-842708 pmid: 30089630
66 H Köksal, P Dillard, SE Josefsson, SM Maggadottir, S Pollmann, A Fåne, YN Blaker, K Beiske, K Huse, A Kolstad, H Holte, G Kvalheim, EB Smeland, JH Myklebust, EM Inderberg, S Wälchli. Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma. Blood Adv 2019; 3(8): 1230–1243
https://doi.org/10.1182/bloodadvances.2018029678 pmid: 30979721
67 M Ruella, J Xu, DM Barrett, JA Fraietta, TJ Reich, DE Ambrose, M Klichinsky, O Shestova, PR Patel, I Kulikovskaya, F Nazimuddin, VG Bhoj, EJ Orlando, TJ Fry, H Bitter, SL Maude, BL Levine, CL Nobles, FD Bushman, RM Young, J Scholler, SI Gill, CH June, SA Grupp, SF Lacey, JJ Melenhorst. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med 2018; 24(10): 1499–1503
https://doi.org/10.1038/s41591-018-0201-9 pmid: 30275568
68 KR Calvo, CS McCoy, M Stetler-Stevenson. Flow cytometry immunophenotyping of hematolymphoid neoplasia. Methods Mol Biol 2011; 699: 295–316
https://doi.org/10.1007/978-1-61737-950-5_14 pmid: 21116989
69 FE Craig, KA Foon. Flow cytometric immunophenotyping for hematologic neoplasms. Blood 2008; 111(8): 3941–3967
https://doi.org/10.1182/blood-2007-11-120535 pmid: 18198345
70 J Vera, B Savoldo, S Vigouroux, E Biagi, M Pule, C Rossig, J Wu, HE Heslop, CM Rooney, MK Brenner, G Dotti. T lymphocytes redirected against the κ light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 2006; 108(12): 3890–3897
https://doi.org/10.1182/blood-2006-04-017061 pmid: 16926291
71 CA Ramos, B Savoldo, V Torrano, B Ballard, H Zhang, O Dakhova, E Liu, G Carrum, RT Kamble, AP Gee, Z Mei, MF Wu, H Liu, B Grilley, CM Rooney, MK Brenner, HE Heslop, G Dotti. Clinical responses with T lymphocytes targeting malignancy-associated κ light chains. J Clin Invest 2016; 126(7): 2588–2596
https://doi.org/10.1172/JCI86000 pmid: 27270177
72 J Wang, Y Hu, S Yang, G Wei, X Zhao, W Wu, Y Zhang, Y Zhang, D Chen, Z Wu, L Xiao, AH Chang, H Huang, K Zhao. Role of fluorodeoxyglucose positron emission tomography/computed tomography in predicting the adverse effects of chimeric antigen receptor T cell therapy in patients with non-Hodgkin lymphoma. Biol Blood Marrow Transplant 2019; 25(6): 1092–1098
https://doi.org/10.1016/j.bbmt.2019.02.008 pmid: 30769193
73 T Giavridis, SJC van der Stegen, J Eyquem, M Hamieh, A Piersigilli, M Sadelain. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med 2018; 24(6): 731–738
https://doi.org/10.1038/s41591-018-0041-7 pmid: 29808005
74 M Norelli, B Camisa, G Barbiera, L Falcone, A Purevdorj, M Genua, F Sanvito, M Ponzoni, C Doglioni, P Cristofori, C Traversari, C Bordignon, F Ciceri, R Ostuni, C Bonini, M Casucci, A Bondanza. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 2018; 24(6): 739–748
https://doi.org/10.1038/s41591-018-0036-4 pmid: 29808007
75 DT Teachey, SF Lacey, PA Shaw, JJ Melenhorst, SL Maude, N Frey, E Pequignot, VE Gonzalez, F Chen, J Finklestein, DM Barrett, SL Weiss, JC Fitzgerald, RA Berg, R Aplenc, C Callahan, SR Rheingold, Z Zheng, S Rose-John, JC White, F Nazimuddin, G Wertheim, BL Levine, CH June, DL Porter, SA Grupp. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 2016; 6(6): 664–679
https://doi.org/10.1158/2159-8290.CD-16-0040 pmid: 27076371
76 J Wang, Y Hu, H Huang. Current development of chimeric antigen receptor T-cell therapy. Stem Cell Investig 2018; 5: 44
https://doi.org/10.21037/sci.2018.11.05 pmid: 30701179
77 SS Neelapu, S Tummala, P Kebriaei, W Wierda, C Gutierrez, FL Locke, KV Komanduri, Y Lin, N Jain, N Daver, J Westin, AM Gulbis, ME Loghin, JF de Groot, S Adkins, SE Davis, K Rezvani, P Hwu, EJ Shpall. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol 2018; 15(1): 47–62
https://doi.org/10.1038/nrclinonc.2017.148 pmid: 28925994
78 DW Lee, R Gardner, DL Porter, CU Louis, N Ahmed, M Jensen, SA Grupp, CL Mackall. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014; 124(2): 188–195
https://doi.org/10.1182/blood-2014-05-552729 pmid: 24876563
79 JH Park, I Rivière, M Gonen, X Wang, B Sénéchal, KJ Curran, C Sauter, Y Wang, B Santomasso, E Mead, M Roshal, P Maslak, M Davila, RJ Brentjens, M Sadelain. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 2018; 378(5): 449–459
https://doi.org/10.1056/NEJMoa1709919 pmid: 29385376
80 D Porter, N Frey, PA Wood, Y Weng, SA Grupp. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J Hematol Oncol 2018; 11(1): 35
https://doi.org/10.1186/s13045-018-0571-y pmid: 29499750
81 DW Lee, BD Santomasso, FL Locke, A Ghobadi, CJ Turtle, JN Brudno, MV Maus, JH Park, E Mead, S Pavletic, WY Go, L Eldjerou, RA Gardner, N Frey, KJ Curran, K Peggs, M Pasquini, JF DiPersio, MRM van den Brink, KV Komanduri, SA Grupp, SS Neelapu. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant 2019; 25(4): 625–638
https://doi.org/10.1016/j.bbmt.2018.12.758 pmid: 30592986
82 F Chen, DT Teachey, E Pequignot, N Frey, D Porter, SL Maude, SA Grupp, CH June, JJ Melenhorst, SF Lacey. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J Immunol Methods 2016; 434: 1–8
https://doi.org/10.1016/j.jim.2016.03.005 pmid: 27049586
83 RM Sterner, R Sakemura, MJ Cox, N Yang, RH Khadka, CL Forsman, MJ Hansen, F Jin, K Ayasoufi, M Hefazi, KJ Schick, DK Walters, O Ahmed, D Chappell, T Sahmoud, C Durrant, WK Nevala, MM Patnaik, LR Pease, KE Hedin, NE Kay, AJ Johnson, SS Kenderian. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 2019; 133(7): 697–709
https://doi.org/10.1182/blood-2018-10-881722 pmid: 30463995
84 X Xiao, X He, Q Li, H Zhang, J Meng, Y Jiang, Q Deng, M Zhao. Plasma exchange can be an alternative therapeutic modality for severe cytokine release syndrome after chimeric antigen receptor-T cell infusion: a case report. Clin Cancer Res 2019; 25(1): 29–34
https://doi.org/10.1158/1078-0432.CCR-18-1379 pmid: 30322878
85 S Fried, A Avigdor, B Bielorai, A Meir, MJ Besser, J Schachter, A Shimoni, A Nagler, A Toren, E Jacoby. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplant 2019; 54(10): 1643–1650
https://doi.org/10.1038/s41409-019-0487-3 pmid: 30809033
86 T Jain, M Bar, AJ Kansagra, EA Chong, SK Hashmi, SS Neelapu, M Byrne, E Jacoby, A Lazaryan, CA Jacobson, SM Ansell, FT Awan, L Burns, V Bachanova, CM Bollard, PA Carpenter, JF DiPersio, M Hamadani, HE Heslop, JA Hill, KV Komanduri, CA Kovitz, HM Lazarus, JM Serrette, M Mohty, D Miklos, A Nagler, SZ Pavletic, BN Savani, SJ Schuster, MA Kharfan-Dabaja, MA Perales, Y Lin. Use of chimeric antigen receptor T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: an expert panel opinion from the American Society for Transplantation and Cellular Therapy. Biol Blood Marrow Transplant 2019; 25(12): 2305–2321
https://doi.org/10.1016/j.bbmt.2019.08.015 pmid: 31446199
87 MS Topp, N Gökbuget, AS Stein, G Zugmaier, S O’Brien, RC Bargou, H Dombret, AK Fielding, L Heffner, RA Larson, S Neumann, R Foà, M Litzow, JM Ribera, A Rambaldi, G Schiller, M Brüggemann, HA Horst, C Holland, C Jia, T Maniar, B Huber, D Nagorsen, SJ Forman, HM Kantarjian. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 2015; 16(1): 57–66
https://doi.org/10.1016/S1470-2045(14)71170-2 pmid: 25524800
88 Y Hu, J Sun, Z Wu, J Yu, Q Cui, C Pu, B Liang, Y Luo, J Shi, A Jin, L Xiao, H Huang. Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy. J Hematol Oncol 2016; 9(1): 70
https://doi.org/10.1186/s13045-016-0299-5 pmid: 27526682
89 D Liu, J Zhao. Cytokine release syndrome: grading, modeling, and new therapy. J Hematol Oncol 2018; 11(1): 121
https://doi.org/10.1186/s13045-018-0653-x pmid: 30249264
90 No authors listed. JCAR015 in ALL: a root-cause investigation. Cancer Discov 2018; 8(1): 4–5
pmid: 29208604
91 JS Abramson, B McGree, S Noyes, S Plummer, C Wong, YB Chen, E Palmer, T Albertson, JA Ferry, IC Arrillaga-Romany. Anti-CD19 CAR T cells in CNS diffuse large-B-cell lymphoma. N Engl J Med 2017; 377(8): 783–784
https://doi.org/10.1056/NEJMc1704610 pmid: 28834486
92 DW Lee, JN Kochenderfer, M Stetler-Stevenson, YK Cui, C Delbrook, SA Feldman, TJ Fry, R Orentas, M Sabatino, NN Shah, SM Steinberg, D Stroncek, N Tschernia, C Yuan, H Zhang, L Zhang, SA Rosenberg, AS Wayne, CL Mackall. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015; 385(9967): 517–528
https://doi.org/10.1016/S0140-6736(14)61403-3 pmid: 25319501
93 BD Santomasso, JH Park, D Salloum, I Riviere, J Flynn, E Mead, E Halton, X Wang, B Senechal, T Purdon, JR Cross, H Liu, B Vachha, X Chen, LM DeAngelis, D Li, Y Bernal, M Gonen, HG Wendel, M Sadelain, RJ Brentjens. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov 2018; 8(8): 958–971
https://doi.org/10.1158/2159-8290.CD-17-1319 pmid: 29880584
94 J Gust, KA Hay, LA Hanafi, D Li, D Myerson, LF Gonzalez-Cuyar, C Yeung, WC Liles, M Wurfel, JA Lopez, J Chen, D Chung, S Harju-Baker, T Özpolat, KR Fink, SR Riddell, DG Maloney, CJ Turtle. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 2017; 7(12): 1404–1419
https://doi.org/10.1158/2159-8290.CD-17-0698 pmid: 29025771
95 FL Locke, SS Neelapu, NL Bartlett, LJ Lekakis, CA Jacobson, I Braunschweig, OO Oluwole, T Siddiqi, Y Lin, JM Timmerman, PM Reagan, A Bot, JM Rossi, M Sherman, L Navale, Y Jiang, JS Aycock, M Elias, JS Wiezorek, WY, Go DB Miklos. Preliminary results of prophylactic tocilizumab after axicabtageneciloleucel (axi-cel; KTE-C19) treatment for patients with refractory, aggressive non-Hodgkin lymphoma (NHL). Blood 2017 ; 130 (Supplement_1): 1547
https://doi.org/10.1182/blood.V130.Suppl_1.1547.1547
96 A Jin, J Feng, Z Wang, L Jiang, Y Hu, K Zhao, H Huang. Severe dyspnea caused by rapid enlargement of cervical lymph node in a relapsed/refractory B-cell lymphoma patient following chimeric antigen receptor T-cell therapy. Bone Marrow Transplant 2019; 54(7): 969–972
https://doi.org/10.1038/s41409-018-0412-1 pmid: 30563981
97 Y Hu, J Wang, C Pu, K Zhao, Q Cui, G Wei, W Wu, L Xiao, Y Xiao, J Wang, Z Wu, H Huang. Delayed terminal ileal perforation in a relapsed/refractory B-cell lymphoma patient with rapid remission following chimeric antigen receptor T-cell therapy. Cancer Res Treat 2018; 50(4): 1462–1466
https://doi.org/10.4143/crt.2017.473 pmid: 29397660
98 G Hopfinger, U Jäger, N Worel. CAR-T cell therapy in diffuse large B cell lymphoma: hype and hope. HemaSphere 2019; 3(2): e185
https://doi.org/10.1097/HS9.0000000000000185 pmid: 31723824
99 VG Bhoj, D Arhontoulis, G Wertheim, J Capobianchi, CA Callahan, CT Ellebrecht, AE Obstfeld, SF Lacey, JJ Melenhorst, F Nazimuddin, WT Hwang, SL Maude, MA Wasik, A Bagg, S Schuster, MD Feldman, DL Porter, SA Grupp, CH June, MC Milone. Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood 2016; 128(3): 360–370
https://doi.org/10.1182/blood-2016-01-694356 pmid: 27166358
100 AJ Kansagra, NV Frey, M Bar, TW Laetsch, PA Carpenter, BN Savani, HE Heslop, CM Bollard, KV Komanduri, DA Gastineau, C Chabannon, MA Perales, M Hudecek, M Aljurf, L Andritsos, JA Barrett, V Bachanova, C Bonini, A Ghobadi, SI Gill, JA Hill, S Kenderian, P Kebriaei, A Nagler, D Maloney, HD Liu, NN Shah, MA Kharfan-Dabaja, EJ Shpall, GJ Mufti, L Johnston, E Jacoby, A Bazarbachi, JF DiPersio, SZ Pavletic, DL Porter, SA Grupp, M Sadelain, MR Litzow, M Mohty, SK Hashmi. Clinical utilization of chimeric antigen receptor T-cells (CAR-T) in B-cell acute lymphoblastic leukemia (ALL)—an expert opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transplant 2019; 54(11): 1868–1880
https://doi.org/10.1038/s41409-019-0451-2 pmid: 31092900
101 SL Maude, N Frey, PA Shaw, R Aplenc, DM Barrett, NJ Bunin, A Chew, VE Gonzalez, Z Zheng, SF Lacey, YD Mahnke, JJ Melenhorst, SR Rheingold, A Shen, DT Teachey, BL Levine, CH June, DL Porter, SA Grupp. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371(16): 1507–1517
https://doi.org/10.1056/NEJMoa1407222 pmid: 25317870
102 A Avigdor, R Shouval, E Jacoby, T Davidson, A Shimoni, M Besser, A Nagler. CAR T cells induce a complete response in refractory Burkitt lymphoma. Bone Marrow Transplant 2018; 53(12): 1583–1585
https://doi.org/10.1038/s41409-018-0235-0 pmid: 29795432
103 ML Wang, J Munoz, A Goy, FL Locke, CA Jacobson, BT Hill, JM Timmerman, H Holmes, S Jaglowski, IW Flinn, PA McSweeney, DB Miklos, JM Pagel, MJ Kersten, W Peng, L Zheng, JM Rossi, RK Jain, AV Rao, PM Reagan. KTE-X19, an anti-CD19 chimeric antigen receptor (CAR) T cell therapy, in patients (Pts) with relapsed/refractory (R/R) mantle cell lymphoma (MCL): results of the phase 2 ZUMA-2 study. Blood 2019; 134(Supplement_1): 754
https://doi.org/10.1182/blood-2019-126064
104 E Liu, D Marin, P Banerjee, HA Macapinlac, P Thompson, R Basar, L Nassif Kerbauy, B Overman, P Thall, M Kaplan, V Nandivada, I Kaur, A Nunez Cortes, K Cao, M Daher, C Hosing, EN Cohen, P Kebriaei, R Mehta, S Neelapu, Y Nieto, M Wang, W Wierda, M Keating, R Champlin, EJ Shpall, K Rezvani. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med 2020; 382(6): 545–553
https://doi.org/10.1056/NEJMoa1910607 pmid: 32023374
105 J Cao, H Cheng, M Shi, G Wang, W Chen, K Qi, H Li, J Qiao, J Zhao, Q Wu, L Zeng, G Jing, J Zheng, K Xu. Humanized CD19-specific chimeric antigen-receptor T-cells in 2 adults with newly diagnosed B-cell acute lymphoblastic leukemia. Leukemia 2019; 33(11): 2751–2753
https://doi.org/10.1038/s41375-019-0516-7 pmid: 31308471
106 G Ma, J Shen, K Pinz, M Wada, J Park, S Kim, T Togano, W Tse. Targeting T cell malignancies using CD4CAR T-cells and implementing a natural safety switch. Stem Cell Rev Rep 2019; 15(3): 443–447
https://doi.org/10.1007/s12015-019-09876-5 pmid: 30826931
107 D Gomes-Silva, M Srinivasan, S Sharma, CM Lee, DL Wagner, TH Davis, RH Rouce, G Bao, MK Brenner, M Mamonkin. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 2017; 130(3): 285–296
https://doi.org/10.1182/blood-2017-01-761320 pmid: 28539325
108 YT Png, N Vinanica, T Kamiya, N Shimasaki, E Coustan-Smith, D Campana. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Adv 2017; 1(25): 2348–2360
https://doi.org/10.1182/bloodadvances.2017009928 pmid: 29296885
109 M Byrne, OO Oluwole, B Savani, NS Majhail, BT Hill, FL Locke. Understanding and managing large B cell lymphoma relapses after chimeric antigen receptor T cell therapy. Biol Blood Marrow Transplant 2019; 25(11): e344–e351
https://doi.org/10.1016/j.bbmt.2019.06.036 pmid: 31279751
110 AJ Walker, RG Majzner, L Zhang, K Wanhainen, AH Long, SM Nguyen, P Lopomo, M Vigny, TJ Fry, RJ Orentas, CL Mackall. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol Ther 2017; 25(9): 2189–2201
https://doi.org/10.1016/j.ymthe.2017.06.008 pmid: 28676342
111 K Watanabe, S Terakura, AC Martens, T van Meerten, S Uchiyama, M Imai, R Sakemura, T Goto, R Hanajiri, N Imahashi, K Shimada, A Tomita, H Kiyoi, T Nishida, T Naoe, M Murata. Target antigen density governs the efficacy of anti-CD20-CD28-CD3z chimeric antigen receptor-modified effector CD8+ T cells. J Immunol 2015; 194(3): 911–920
https://doi.org/10.4049/jimmunol.1402346 pmid: 25520398
112 HG Caruso, LV Hurton, A Najjar, D Rushworth, S Ang, S Olivares, T Mi, K Switzer, H Singh, H Huls, DA Lee, AB Heimberger, RE Champlin, LJ Cooper. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res 2015; 75(17): 3505–3518
https://doi.org/10.1158/0008-5472.CAN-15-0139 pmid: 26330164
113 F Turatti, M Figini, E Balladore, P Alberti, P Casalini, JD Marks, S Canevari, D Mezzanzanica. Redirected activity of human antitumor chimeric immune receptors is governed by antigen and receptor expression levels and affinity of interaction. J Immunother 2007; 30(7): 684–693
https://doi.org/10.1097/CJI.0b013e3180de5d90 pmid: 17893561
114 Z Ying, XF Huang, X Xiang, Y Liu, X Kang, Y Song, X Guo, H Liu, N Ding, T Zhang, P Duan, Y Lin, W Zheng, X Wang, N Lin, M Tu, Y Xie, C Zhang, W Liu, L Deng, S Gao, L Ping, X Wang, N Zhou, J Zhang, Y Wang, S Lin, M Mamuti, X Yu, L Fang, S Wang, H Song, G Wang, L Jones, J Zhu, SY Chen. A safe and potent anti-CD19 CAR T cell therapy. Nat Med 2019; 25(6): 947–953
https://doi.org/10.1038/s41591-019-0421-7 pmid: 31011207
115 N Wang, X Hu, W Cao, C Li, Y Xiao, Y Cao, C Gu, S Zhang, L Chen, J Cheng, G Wang, X Zhou, M Zheng, X Mao, L Jiang, D Wang, Q Wang, Y Lou, H Cai, D Yan, Y Zhang, T Zhang, J Zhou, L Huang. Efficacy and safety of CAR19/22 T-cell “Cocktail” therapy in patients with refractory/ relapsed B-cell malignancies. Blood 2020; 135(1): 17– 27
https://doi.org/10.1182/blood.2019000017 pmid: 31697824
116 J Pan, S Zuo, B Deng, X Xu, C Li, Q Zheng, Z Ling, W Song, J Xu, J Duan, Z Wang, X Yu, AH Chang, X Feng, C Tong. Sequential CD19-22 CAR T therapy induces sustained remission in children with r/r B-ALL. Blood 2020; 135(5): 387–391
https://doi.org/DOI: 10.1182/blood.2019003293 pmid: 31725148
117 M Ruella, DM Barrett, SS Kenderian, O Shestova, TJ Hofmann, J Perazzelli, M Klichinsky, V Aikawa, F Nazimuddin, M Kozlowski, J Scholler, SF Lacey, JJ Melenhorst, JJ Morrissette, DA Christian, CA Hunter, M Kalos, DL Porter, CH June, SA Grupp, S Gill. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest 2016; 126(10): 3814–3826
https://doi.org/10.1172/JCI87366 pmid: 27571406
118 Z Grada, M Hegde, T Byrd, DR Shaffer, A Ghazi, VS Brawley, A Corder, K Schönfeld, J Koch, G Dotti, HE Heslop, S Gottschalk, WS Wels, ML Baker, N Ahmed. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids 2013; 2: e105
https://doi.org/10.1038/mtna.2013.32 pmid: 23839099
119 H Jia, Z Wang, Y Wang, Y Liu, H Dai, C Tong, Y Guo, B Guo, D Ti, X Han, Q Yang, Z Wu, W Han. Haploidentical CD19/CD22 bispecific CAR-T cells induced MRD-negative remission in a patient with relapsed and refractory adult B-ALL after haploidentical hematopoietic stem cell transplantation. J Hematol Oncol 2019; 12(1): 57
https://doi.org/10.1186/s13045-019-0741-6 pmid: 31182121
120 H Zhao, Y Hu, A Nagler, AH Chang, H Huang. CD19/CD22 dual targeted (chimeric antigen receptor) CAR-T therapy for relapsed or refractory (R/R) B-cell non-Hodgkin lymphoma (B-NHL). The 46th Annual Meeting of the EBMT. Abstract #O038. 2020
121 NN Shah, F Zhu, D Schneider, C Taylor, W Krueger, A Worden, WL Longo, M Hamadani, T Fenske, B Johnson, B Dropulic, R Orentas, P Hari. Results of a phase I study of bispecific anti-CD19, anti-CD20 chimeric antigen receptor (CAR) modified T cells for relapsed, refractory, non-Hodgkin lymphoma. J Clin Oncol 2019; 37(15_suppl): 2510
https://doi.org/10.1200/JCO.2019.37.15_suppl.2510
122 ZX Yan, L Li, W Wang, BS OuYang, S Cheng, L Wang, W Wu, PP Xu, M Muftuoglu, M Hao, S Yang, MC Zhang, Z Zheng, J Li, WL Zhao. Clinical efficacy and tumor microenvironment influence in a dose-escalation study of anti-CD19 chimeric antigen receptor T cells in refractory B-cell non-Hodgkin’s lymphoma. Clin Cancer Res 2019; 25(23): 6995–7003
https://doi.org/10.1158/1078-0432.CCR-19-0101 pmid: 31444250
123 EJ Wherry, M Kurachi. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 2015; 15(8): 486–499
https://doi.org/10.1038/nri3862 pmid: 26205583
124 SN Zolov, SP Rietberg, CL Bonifant. Programmed cell death protein 1 activation preferentially inhibits CD28.CAR-T cells. Cytotherapy 2018; 20(10): 1259–1266
https://doi.org/10.1016/j.jcyt.2018.07.005 pmid: 30309710
125 H Wang, G Kaur, AI Sankin, F Chen, F Guan, X Zang. Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. J Hematol Oncol 2019; 12(1): 59
https://doi.org/10.1186/s13045-019-0746-1 pmid: 31186046
126 EA Chong, JJ Melenhorst, SF Lacey, DE Ambrose, V Gonzalez, BL Levine, CH June, SJ Schuster. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood 2017; 129(8): 1039–1041
https://doi.org/10.1182/blood-2016-09-738245 pmid: 28031179
127 BT Hill, ZJ Roberts, A Xue, JM Rossi, MR Smith. Rapid tumor regression from PD-1 inhibition after anti-CD19 chimeric antigen receptor T-cell therapy in refractory diffuse large B-cell lymphoma. Bone Marrow Transplant 2020; 55(6): 1184–1187
https://doi.org/10.1038/s41409-019-0657-3 pmid: 31471571
128 ER Suarez, K Chang, J Sun, J Sui, GJ Freeman, S Signoretti, Q Zhu, WA Marasco. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget 2016; 7(23): 34341–34355
https://doi.org/10.18632/oncotarget.9114 pmid: 27145284
129 W Zhao, L Jia, M Zhang, X Huang, P Qian, Q Tang, J Zhu, Z Feng. The killing effect of novel bi-specific Trop2/PD-L1 CAR-T cell targeted gastric cancer. Am J Cancer Res 2019; 9(8): 1846–1856
pmid: 31497363
130 AL Garfall, EA Stadtmauer, WT Hwang, SF Lacey, JJ Melenhorst, M Krevvata, MP Carroll, WH Matsui, Q Wang, MV Dhodapkar, K Dhodapkar, R Das, DT Vogl, BM Weiss, AD Cohen, PA Mangan, EC Ayers, S Nunez-Cruz, I Kulikovskaya, MM Davis, A Lamontagne, K Dengel, ND Kerr, RM Young, DL Siegel, BL Levine, MC Milone, MV Maus, CH June. Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight 2018; 3(8): e120505
https://doi.org/10.1172/jci.insight.120505 pmid: 29669947
131 CS Sauter, B Senechal, I Rivière, A Ni, Y Bernal, X Wang, T Purdon, M Hall, AN Singh, VZ Szenes, S Yoo, A Dogan, Y Wang, CH Moskowitz, S Giralt, MJ Matasar, MA Perales, KJ Curran, J Park, M Sadelain, RJ Brentjens. CD19 CAR T cells following autologous transplantation in poor-risk relapsed and refractory B-cell non-Hodgkin lymphoma. Blood 2019; 134(7): 626–635
https://doi.org/10.1182/blood.2018883421 pmid: 31262783
132 C DeSelm, ML Palomba, J Yahalom, M Hamieh, J Eyquem, VK Rajasekhar, M Sadelain. Low-dose radiation conditioning enables CAR T cells to mitigate antigen escape. Mol Ther 2018; 26(11): 2542–2552
https://doi.org/10.1016/j.ymthe.2018.09.008 pmid: 30415658
133 AJ Sim, MD Jain, NB Figura, JC Chavez, BD Shah, F Khimani, A Lazaryan, G Krivenko, ML Davila, HD Liu, AD Falchook, S Dahiya, AP Rapoport, S Kim, FL Locke, TJ Robinson. Radiation therapy as a bridging strategy for CAR T cell therapy with axicabtagene ciloleucel in diffuse large B-cell lymphoma. Int J Radiat Oncol Biol Phys 2019; 105(5): 1012–1021
https://doi.org/10.1016/j.ijrobp.2019.05.065 pmid: 31175906
134 K Mestermann, T Giavridis, J Weber, J Rydzek, S Frenz, T Nerreter, A Mades, M Sadelain, H Einsele, M Hudecek. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med 2019; 11(499): eaau5907
https://doi.org/10.1126/scitranslmed.aau5907 pmid: 31270272
135 EW Weber, RC Lynn, E Sotillo, J Lattin, P Xu, CL Mackall. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv 2019; 3(5): 711–717
https://doi.org/10.1182/bloodadvances.2018028720 pmid: 30814055
[1] Maura Massimino, Marta Podda, Lorenza Gandola, Emanuele Pignoli, Ettore Seregni, Carlo Morosi, Filippo Spreafico, Andrea Ferrari, Emilia Pecori, Monica Terenziani. Long-term results of suppressing thyroid-stimulating hormone during radiotherapy to prevent primary hypothyroidism in medulloblastoma/PNET and Hodgkin lymphoma: a prospective cohort study[J]. Front. Med., 2021, 15(1): 101-107.
[2] Ping Li, Ningxin Dong, Yu Zeng, Jie Liu, Xiaochen Tang, Junbang Wang, Wenjun Zhang, Shiguang Ye, Lili Zhou, Alex Hongsheng Chang, Aibin Liang. Chimeric antigen receptor T-cell therapy: a promising treatment modality for relapsed/refractory mantle cell lymphoma[J]. Front. Med., 2020, 14(6): 811-815.
[3] Lili Zhou, Ping Li, Shiguang Ye, Xiaochen Tang, Junbang Wang, Jie Liu, Aibin Liang. Different sites of extranodal involvement may affect the survival of patients with relapsed or refractory non-Hodgkin lymphoma after chimeric antigen receptor T cell therapy[J]. Front. Med., 2020, 14(6): 786-791.
[4] Yiwen Cao, Zhenhua Liu, Wen Wu, Ying Qian, Qin Shi, Rong Shen, Binshen Ouyang, Pengpeng Xu, Shu Cheng, Jin Ye, Yiming Lu, Chaofu Wang, Chengde Yang, Li Wang, Weili Zhao. Presence of multiple abnormal immunologic markers is an independent prognostic factor of diffuse large B-cell lymphoma[J]. Front. Med., 2019, 13(1): 94-103.
[5] Sumedha Roy, Yuan Zhuang. Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells[J]. Front. Med., 2018, 12(4): 374-386.
[6] Xiaofeng Shi, Rong Ba, Haiyan You, Qian Jiang, Jiansong Huang, Jianhua Mao, Lanxiu Han, Shuo Zhang, Qin Zhuang, Xianqiu Yu, Lixia Wang, Yun Wang, Dongya Li, Wei Zhu, Yong Zhang, Yan Zhu, Xiaodong Xi. A rare case of B-lymphoproliferative disorder with villous lymphocytes harboring t(8;14)(q24;q32) translocation[J]. Front. Med., 2018, 12(3): 324-329.
[7] Muhammad Furqan,Yamei Chen,Akintunde Akinleye,Judy Sarungbam,Alan Gass,Karen Seiter,Delong Liu. Management of mantle cell leukemia with cardiac involvement leading to cardiogenic shock[J]. Front. Med., 2014, 8(2): 254-258.
[8] Miao Xu, Yu Hou, Lei Sheng, Jun Peng. Therapeutic effects of thalidomide in hematologic disorders: a review[J]. Front Med, 2013, 7(3): 290-300.
[9] Chunquan CAI MD, PhD, Qingjiang ZHANG BM, Changhong SHEN MD, PhD, . Primary spinal epidural non-Hodgkin’s lymphoma presented with spinal cord compression syndrome[J]. Front. Med., 2009, 3(4): 499-502.
[10] BAI Xiangyang, TANG Duozhuang, ZHU Tao, SUN Lishi, YAN Lingling, LU Yunping, ZHOU Jianfeng, MA Ding. Expression and bioinformatic analysis of lymphoma-associated novel gene KIAA0372[J]. Front. Med., 2007, 1(1): 93-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed