|
|
Long-term results of suppressing thyroid-stimulating hormone during radiotherapy to prevent primary hypothyroidism in medulloblastoma/PNET and Hodgkin lymphoma: a prospective cohort study |
Maura Massimino1( ), Marta Podda1, Lorenza Gandola2, Emanuele Pignoli3, Ettore Seregni4, Carlo Morosi5, Filippo Spreafico1, Andrea Ferrari1, Emilia Pecori2, Monica Terenziani1 |
1. Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20146, Italy 2. Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20146, Italy 3. Medical Physics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20146, Italy 4. Department of Nuclear Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20146, Italy 5. Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20146, Italy |
|
|
Abstract Primary hypothyroidism commonly occurs after radiotherapy (RT), and coincides with increased circulating thyroid-stimulating hormone (TSH) levels. We tested therefore the protective effect of suppressing TSH with L-thyroxine during RT for medulloblastoma/PNET and Hodgkin lymphoma (HL) in a prospective cohort study. From 1998 to 2001, a total of 37 euthyroid children with medulloblastoma/PNET plus 14 with HL, scheduled for craniospinal irradiation and mediastinum/neck radiotherapy, respectively, underwent thyroid ultrasound and free triiodothyronine (FT3), free thyroxine (FT4), and TSH evaluation at the beginning and end of craniospinal iiradiation. From 14 days before and up to the end of radiotherapy, patients were administered L-thyroxine checking every 3 days TSH to ensure a value<0.3 μIU/mL. During follow-up, blood tests and ultrasound were repeated; primary hypothyroidism was considered an increased TSH level greater than normal range. Twenty-two/37 patients with medulloblastoma/PNET and all the 14 patients with HL were alive after a median 231 months from radiotherapy with 7/22 and 8/14 having correctly reached TSH levels ˂ 0.3 μIU/mL and well matched for other variables. Twenty years on, hypothyroidism-free survival rates differed significantly, being 60%±15% and 15.6%±8.2% in TSH-suppressed vs. not-TSH suppressed patients, respectively (P=0.001). These findings suggest that hypothyroidism could be durably prevented in two populations at risk of late RT sequelae, but it should be confirmed in a larger cohort.
|
Keywords
iatrogenic primary hypothyroidism
late effects of radiotherapy
long-term follow-up
medulloblastoma
Hodgkin lymphoma
|
Corresponding Author(s):
Maura Massimino
|
Just Accepted Date: 10 July 2020
Online First Date: 13 August 2020
Issue Date: 11 February 2021
|
|
1 |
SG Waguespack. Thyroid sequelae of pediatric cancer therapy. Horm Res Paediatr 2019; 91(2): 104–117
https://doi.org/10.1159/000495040
pmid: 30541010
|
2 |
PD Inskip, LHS Veiga, AV Brenner, AJ Sigurdson, E Ostroumova, EJ Chow, M Stovall, SA Smith, RE Weathers, W Leisenring, LL Robison, GT Armstrong, CA Sklar, JH Lubin. Hypothyroidism after radiation therapy for childhood cancer: a report from the Childhood Cancer Survivor Study. Radiat Res 2018; 190(2): 117–132
https://doi.org/10.1667/RR14888.1
pmid: 29763379
|
3 |
M Massimino, L Gandola, P Collini, E Seregni, A Marchianò, A Serra, E Pignoli, F Spreafico, F Pallotti, M Terenziani, V Biassoni, E Bombardieri, F Fossati-Bellani. Thyroid-stimulating hormone suppression for protection against hypothyroidism due to craniospinal irradiation for childhood medulloblastoma/primitive neuroectodermal tumor. Int J Radiat Oncol Biol Phys 2007; 69(2): 404–410
https://doi.org/10.1016/j.ijrobp.2007.03.028
pmid: 17601681
|
4 |
M Massimino, L Gandola, E Pignoli, E Seregni, A Marchianò, E Pecori, S Catania, G Cefalo. TSH suppression as a possible means of protection against hypothyroidism after irradiation for childhood Hodgkins lymphoma. Pediatr Blood Cancer 2011; 57(1): 166–168
https://doi.org/10.1002/pbc.22915
pmid: 21557462
|
5 |
DN Louis, A Perry, G Reifenberger, A von Deimling, D Figarella-Branger, WK Cavenee, H Ohgaki, OD Wiestler, P Kleihues, DW Ellison. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016; 131(6): 803–820
https://doi.org/10.1007/s00401-016-1545-1
pmid: 27157931
|
6 |
JL Wémeau, P Caron, C Schvartz, JL Schlienger, J Orgiazzi, C Cousty, V Vlaeminck-Guillem. Effects of thyroid-stimulating hormone suppression with levothyroxine in reducing the volume of solitary thyroid nodules and improving extranodular nonpalpable changes: a randomized, double-blind, placebo-controlled trial by the French Thyroid Research Group. J Clin Endocrinol Metab 2002; 87(11): 4928–4934
https://doi.org/10.1210/jc.2002-020365
pmid: 12414852
|
7 |
B Biondi, DS Cooper. Thyroid hormone suppression therapy. Endocrinol Metab Clin North Am 2019; 48(1): 227–237
https://doi.org/10.1016/j.ecl.2018.10.008
pmid: 30717904
|
8 |
M Massimino, L Gandola, F Mattavelli, N Pizzi, E Seregni, F Pallotti, F Spreafico, A Marchianò, M Terenziani, G Cefalo, V Biassoni, C Meazza, G Trecate, P Collini. Radiation-induced thyroid changes: a retrospective and a prospective view. Eur J Cancer 2009; 45(14): 2546–2551
https://doi.org/10.1016/j.ejca.2009.06.009
pmid: 19608408
|
9 |
DM Green, ML Brecher, D Yakar, LE Blumenson, AN Lindsay, ML Voorhess, M MacGillivray, AI Freeman. Thyroid function in pediatric patients after neck irradiation for Hodgkin disease. Med Pediatr Oncol 1980; 8(2): 127–136
https://doi.org/10.1002/mpo.2950080205
pmid: 7421731
|
10 |
AL Ogilvy-Stuart, SM Shalet, HR Gattamaneni. Thyroid function after treatment of brain tumors in children. J Pediatr 1991; 119(5): 733–737
https://doi.org/10.1016/S0022-3476(05)80288-4
pmid: 1941379
|
11 |
SL Hancock, RS Cox, IR McDougall. Thyroid diseases after treatment of Hodgkin’s disease. N Engl J Med 1991; 325(9): 599–605
https://doi.org/10.1056/NEJM199108293250902
pmid: 1861693
|
12 |
EL Kaplan, P Meier. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53(282): 457–481
https://doi.org/10.1080/01621459.1958.10501452
|
13 |
R Miller, D Siegmund. Maximally selected chi-square statistics. Biometrics 1982; 38(4): 1101–1106
https://doi.org/10.2307/2529881
|
14 |
SL Hancock, IR McDougall, LS Constine. Thyroid abnormalities after therapeutic external radiation. Int J Radiat Oncol Biol Phys 1995; 31(5): 1165–1170
https://doi.org/10.1016/0360-3016(95)00019-U
pmid: 7713780
|
15 |
E Ron, JH Lubin, RE Shore, K Mabuchi, B Modan, LM Pottern, AB Schneider, MA Tucker, JD Boice Jr. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. 1995. Radiat Res 2012; 178(2): AV43–AV60
https://doi.org/10.1667/RRAV05.1
pmid: 22870979
|
16 |
CT Clausen Clausen, H Hasle, AS Holmqvist, L Madanat-Harjuoja, L Tryggvadottir, F Wesenberg, A Bautz, JF Winther, S de Fine Licht. Hyperthyroidism as a late effect in childhood cancer survivors — an adult life after childhood cancer in Scandinavia (ALiCCS) study. Acta Oncol 2019; 58(2): 227–231
https://doi.org/10.1080/0284186X.2018.1535187
pmid: 30585514
|
17 |
SC Clement, LCM Kremer, FA Verburg, JH Simmons, M Goldfarb, RP Peeters, EK Alexander, E Bardi, E Brignardello, LS Constine, CA Dinauer, VM Drozd, F Felicetti, E Frey, A Heinzel, MM van den Heuvel-Eibrink, SA Huang, TP Links, K Lorenz, RL Mulder, SJ Neggers, EJM Nieveen van Dijkum, KC Oeffinger, RR van Rijn, SA Rivkees, CM Ronckers, AB Schneider, R Skinner, JD Wasserman, T Wynn, MM Hudson, PC Nathan, HM van Santen. Balancing the benefits and harms of thyroid cancer surveillance in survivors of Childhood, adolescent and young adult cancer: recommendations from the International Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. Cancer Treat Rev 2018; 63: 28–39
https://doi.org/10.1016/j.ctrv.2017.11.005
pmid: 29202445
|
18 |
HM van Santen, JE van Dijk, H Rodermond, F Vansenne, E Endert, JJ de Vijlder, J Haveman, T Vulsma. Endocrine intervention during irradiation does not prevent damage to the thyroid gland. Thyroid 2006; 16(4): 387–395
https://doi.org/10.1089/thy.2006.16.387
pmid: 16646686
|
19 |
JP Bantle, CK Lee, SH Levitt. Thyroxine administration during radiation therapy to the neck does not prevent subsequent thyroid dysfunction. Int J Radiat Oncol Biol Phys 1985; 11(11): 1999–2002
https://doi.org/10.1016/0360-3016(85)90283-4
pmid: 3932271
|
20 |
K Nishiyama, E Tanaka, Y Tarui, K Miyauchi, K Okagawa. A prospective analysis of subacute thyroid dysfunction after neck irradiation. Int J Radiat Oncol Biol Phys 1996; 34(2): 439–444
https://doi.org/10.1016/0360-3016(95)02079-9
pmid: 8567346
|
21 |
P Bhatti, LH Veiga, CM Ronckers, AJ Sigurdson, M Stovall, SA Smith, R Weathers, W Leisenring, AC Mertens, S Hammond, DL Friedman, JP Neglia, AT Meadows, SS Donaldson, CA Sklar, LL Robison, PD Inskip. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the childhood cancer survivor study. Radiat Res 2010; 174(6): 741–752
https://doi.org/10.1667/RR2240.1
pmid: 21128798
|
22 |
M Wijnen, MM van den Heuvel-Eibrink, M Medici, RP Peeters, AJ van der Lely, SJ Neggers. Risk factors for subsequent endocrine-related cancer in childhood cancer survivors. Endocr Relat Cancer 2016; 23(6): R299–R321
https://doi.org/10.1530/ERC-16-0113
pmid: 27229933
|
23 |
J Harris, B Barber, H Almarzouki, R Scrimger, J Romney, D O’Connell, M Urken, H Seikaly. Free thyroid transfer: short-term results of a novel procedure to prevent post-radiation hypothyroidism. Head Neck 2017; 39(6): 1234–1238
https://doi.org/10.1002/hed.24590
pmid: 27862538
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|