Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (1) : 101-107    https://doi.org/10.1007/s11684-020-0752-2
RESEARCH ARTICLE
Long-term results of suppressing thyroid-stimulating hormone during radiotherapy to prevent primary hypothyroidism in medulloblastoma/PNET and Hodgkin lymphoma: a prospective cohort study
Maura Massimino1(), Marta Podda1, Lorenza Gandola2, Emanuele Pignoli3, Ettore Seregni4, Carlo Morosi5, Filippo Spreafico1, Andrea Ferrari1, Emilia Pecori2, Monica Terenziani1
1. Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20146, Italy
2. Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20146, Italy
3. Medical Physics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20146, Italy
4. Department of Nuclear Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20146, Italy
5. Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20146, Italy
 Download: PDF(189 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Primary hypothyroidism commonly occurs after radiotherapy (RT), and coincides with increased circulating thyroid-stimulating hormone (TSH) levels. We tested therefore the protective effect of suppressing TSH with L-thyroxine during RT for medulloblastoma/PNET and Hodgkin lymphoma (HL) in a prospective cohort study. From 1998 to 2001, a total of 37 euthyroid children with medulloblastoma/PNET plus 14 with HL, scheduled for craniospinal irradiation and mediastinum/neck radiotherapy, respectively, underwent thyroid ultrasound and free triiodothyronine (FT3), free thyroxine (FT4), and TSH evaluation at the beginning and end of craniospinal iiradiation. From 14 days before and up to the end of radiotherapy, patients were administered L-thyroxine checking every 3 days TSH to ensure a value<0.3 μIU/mL. During follow-up, blood tests and ultrasound were repeated; primary hypothyroidism was considered an increased TSH level greater than normal range. Twenty-two/37 patients with medulloblastoma/PNET and all the 14 patients with HL were alive after a median 231 months from radiotherapy with 7/22 and 8/14 having correctly reached TSH levels ˂ 0.3 μIU/mL and well matched for other variables. Twenty years on, hypothyroidism-free survival rates differed significantly, being 60%±15% and 15.6%±8.2% in TSH-suppressed vs. not-TSH suppressed patients, respectively (P=0.001). These findings suggest that hypothyroidism could be durably prevented in two populations at risk of late RT sequelae, but it should be confirmed in a larger cohort.

Keywords iatrogenic primary hypothyroidism      late effects of radiotherapy      long-term follow-up      medulloblastoma      Hodgkin lymphoma     
Corresponding Author(s): Maura Massimino   
Just Accepted Date: 10 July 2020   Online First Date: 13 August 2020    Issue Date: 11 February 2021
 Cite this article:   
Maura Massimino,Marta Podda,Lorenza Gandola, et al. Long-term results of suppressing thyroid-stimulating hormone during radiotherapy to prevent primary hypothyroidism in medulloblastoma/PNET and Hodgkin lymphoma: a prospective cohort study[J]. Front. Med., 2021, 15(1): 101-107.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0752-2
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I1/101
Patient ?code Sex Diagnosis Age at ?diagnosis ?(year) Craniospinal ?and neck/?mediastinumdoses ?in Gy Myeloablative ?schedule Adequate TSH ?suppression Hypothyroidism Interval since ?starting RT ?(month) Other endocrine and ?metabolic problems
3 M MBL-S 12 39 No Yes No 213 Growth hormone (GH), vit D deficiency
5 F MBL-S 11 39 No Yes No 215 GH deficiency, dyslipidemia
11 M S-PNET-S 18 39 No Yes No 239 No
14 F MBL-S 21 39 Yes Yes Yes 214 No
17 M MBL-S 21 39 No Yes No 237 No
19 M MBL-S 13 39 No Yes No 223 No
22 M MBL-S 15 39 No Yes No 227 GH deficiency, dyslipidemia
1 M MBL-NS 1 20.8 Yes No Yes 235 GH deficiency
2 F MBL-NS 6 31.2 Yes No Yes 219 Dyslipidemia, hyperinsulinism, ?panhypopituitarism, vit D deficiency, ?liver steatosis
4 M MBL-NS 8 20.8 No No Yes 243 Dyslipidemia, vit D deficiency
6 M MBL-NS 6 20.8 No No Yes 240 No
7 M MBL-NS 7 31.2 No No No 228 GH deficiency
8 F MBL-NS 16 39 No No Yes 213 No
9 M S-PNET-NS 2 20.8 Yes No No 219 Dyslipidemia, hyperinsulinism, liver ?steatosis, second thyroid tumor
10 M MBL-NS 18 39 No No No 239 GH deficiency
12 F MBL-NS 7 31.2 No No No 238 No
13 F MBL-NS 4 20.8 No No No 241 GH deficiency, vit D deficiency
15 M MBL-NS 3 31.2 Yes No No 232 GH deficiency
16 M MBL-NS 5 20.8 No No Yes 240 GH deficiency
18 M MBL-NS 8 20.8 No No Yes 222 No
20 F MBL-NS 10 39 No No Yes 222 Dyslipidemia, vit D deficiency
21 M MBL-NS 10 39 No No Yes 230 Dyslipidemia, hyperinsulinism, ?panhypopituitarism, liver steatosis
23 M HL-S 12 30 No Yes No 212 No
25 F HL-S 15 25 No Yes Yes 238 Dyslipidemia
29 F HL-S 16 25 No Yes No 215 No
30 M HL-S 9 25 No Yes Yes 240 Second thyroid tumor
31 F HL-S 17 25 No Yes No 207 No
33 M HL-S 10 30 No Yes No 212 No
34 F HL-S 12 30 No Yes No 238 No
36 F HL-S 17 30 No Yes No 227 No
24 F HL-NS 16 25 No No Yes 222 No
26 F HL-NS 13 26 No No Yes 238 No
27 M HL-NS 13 20 No No Yes 209 Dyslipidemia
28 M HL-NS 10 25 No No Yes 232 No
32 F HL-NS 10 25 No No Yes 242 Second thyroid tumor
35 M HL-NS 15 25.2 No No Yes 219 Second thyroid tumor
Tab.1  MBL/PNET and HL cohorts
Fig.1  MBL/PNET and HL patients diagram from diagnosis to present status. hypo, hypothyroid patients; euthy, euthyroid patients.
Fig.2  Hypothyroidism-free survival rates for TSH-suppressed and TSH-not-suppressed patients.
1 SG Waguespack. Thyroid sequelae of pediatric cancer therapy. Horm Res Paediatr 2019; 91(2): 104–117
https://doi.org/10.1159/000495040 pmid: 30541010
2 PD Inskip, LHS Veiga, AV Brenner, AJ Sigurdson, E Ostroumova, EJ Chow, M Stovall, SA Smith, RE Weathers, W Leisenring, LL Robison, GT Armstrong, CA Sklar, JH Lubin. Hypothyroidism after radiation therapy for childhood cancer: a report from the Childhood Cancer Survivor Study. Radiat Res 2018; 190(2): 117–132
https://doi.org/10.1667/RR14888.1 pmid: 29763379
3 M Massimino, L Gandola, P Collini, E Seregni, A Marchianò, A Serra, E Pignoli, F Spreafico, F Pallotti, M Terenziani, V Biassoni, E Bombardieri, F Fossati-Bellani. Thyroid-stimulating hormone suppression for protection against hypothyroidism due to craniospinal irradiation for childhood medulloblastoma/primitive neuroectodermal tumor. Int J Radiat Oncol Biol Phys 2007; 69(2): 404–410
https://doi.org/10.1016/j.ijrobp.2007.03.028 pmid: 17601681
4 M Massimino, L Gandola, E Pignoli, E Seregni, A Marchianò, E Pecori, S Catania, G Cefalo. TSH suppression as a possible means of protection against hypothyroidism after irradiation for childhood Hodgkins lymphoma. Pediatr Blood Cancer 2011; 57(1): 166–168
https://doi.org/10.1002/pbc.22915 pmid: 21557462
5 DN Louis, A Perry, G Reifenberger, A von Deimling, D Figarella-Branger, WK Cavenee, H Ohgaki, OD Wiestler, P Kleihues, DW Ellison. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016; 131(6): 803–820
https://doi.org/10.1007/s00401-016-1545-1 pmid: 27157931
6 JL Wémeau, P Caron, C Schvartz, JL Schlienger, J Orgiazzi, C Cousty, V Vlaeminck-Guillem. Effects of thyroid-stimulating hormone suppression with levothyroxine in reducing the volume of solitary thyroid nodules and improving extranodular nonpalpable changes: a randomized, double-blind, placebo-controlled trial by the French Thyroid Research Group. J Clin Endocrinol Metab 2002; 87(11): 4928–4934
https://doi.org/10.1210/jc.2002-020365 pmid: 12414852
7 B Biondi, DS Cooper. Thyroid hormone suppression therapy. Endocrinol Metab Clin North Am 2019; 48(1): 227–237
https://doi.org/10.1016/j.ecl.2018.10.008 pmid: 30717904
8 M Massimino, L Gandola, F Mattavelli, N Pizzi, E Seregni, F Pallotti, F Spreafico, A Marchianò, M Terenziani, G Cefalo, V Biassoni, C Meazza, G Trecate, P Collini. Radiation-induced thyroid changes: a retrospective and a prospective view. Eur J Cancer 2009; 45(14): 2546–2551
https://doi.org/10.1016/j.ejca.2009.06.009 pmid: 19608408
9 DM Green, ML Brecher, D Yakar, LE Blumenson, AN Lindsay, ML Voorhess, M MacGillivray, AI Freeman. Thyroid function in pediatric patients after neck irradiation for Hodgkin disease. Med Pediatr Oncol 1980; 8(2): 127–136
https://doi.org/10.1002/mpo.2950080205 pmid: 7421731
10 AL Ogilvy-Stuart, SM Shalet, HR Gattamaneni. Thyroid function after treatment of brain tumors in children. J Pediatr 1991; 119(5): 733–737
https://doi.org/10.1016/S0022-3476(05)80288-4 pmid: 1941379
11 SL Hancock, RS Cox, IR McDougall. Thyroid diseases after treatment of Hodgkin’s disease. N Engl J Med 1991; 325(9): 599–605
https://doi.org/10.1056/NEJM199108293250902 pmid: 1861693
12 EL Kaplan, P Meier. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53(282): 457–481
https://doi.org/10.1080/01621459.1958.10501452
13 R Miller, D Siegmund. Maximally selected chi-square statistics. Biometrics 1982; 38(4): 1101–1106
https://doi.org/10.2307/2529881
14 SL Hancock, IR McDougall, LS Constine. Thyroid abnormalities after therapeutic external radiation. Int J Radiat Oncol Biol Phys 1995; 31(5): 1165–1170
https://doi.org/10.1016/0360-3016(95)00019-U pmid: 7713780
15 E Ron, JH Lubin, RE Shore, K Mabuchi, B Modan, LM Pottern, AB Schneider, MA Tucker, JD Boice Jr. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. 1995. Radiat Res 2012; 178(2): AV43–AV60
https://doi.org/10.1667/RRAV05.1 pmid: 22870979
16 CT Clausen Clausen, H Hasle, AS Holmqvist, L Madanat-Harjuoja, L Tryggvadottir, F Wesenberg, A Bautz, JF Winther, S de Fine Licht. Hyperthyroidism as a late effect in childhood cancer survivors — an adult life after childhood cancer in Scandinavia (ALiCCS) study. Acta Oncol 2019; 58(2): 227–231
https://doi.org/10.1080/0284186X.2018.1535187 pmid: 30585514
17 SC Clement, LCM Kremer, FA Verburg, JH Simmons, M Goldfarb, RP Peeters, EK Alexander, E Bardi, E Brignardello, LS Constine, CA Dinauer, VM Drozd, F Felicetti, E Frey, A Heinzel, MM van den Heuvel-Eibrink, SA Huang, TP Links, K Lorenz, RL Mulder, SJ Neggers, EJM Nieveen van Dijkum, KC Oeffinger, RR van Rijn, SA Rivkees, CM Ronckers, AB Schneider, R Skinner, JD Wasserman, T Wynn, MM Hudson, PC Nathan, HM van Santen. Balancing the benefits and harms of thyroid cancer surveillance in survivors of Childhood, adolescent and young adult cancer: recommendations from the International Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. Cancer Treat Rev 2018; 63: 28–39
https://doi.org/10.1016/j.ctrv.2017.11.005 pmid: 29202445
18 HM van Santen, JE van Dijk, H Rodermond, F Vansenne, E Endert, JJ de Vijlder, J Haveman, T Vulsma. Endocrine intervention during irradiation does not prevent damage to the thyroid gland. Thyroid 2006; 16(4): 387–395
https://doi.org/10.1089/thy.2006.16.387 pmid: 16646686
19 JP Bantle, CK Lee, SH Levitt. Thyroxine administration during radiation therapy to the neck does not prevent subsequent thyroid dysfunction. Int J Radiat Oncol Biol Phys 1985; 11(11): 1999–2002
https://doi.org/10.1016/0360-3016(85)90283-4 pmid: 3932271
20 K Nishiyama, E Tanaka, Y Tarui, K Miyauchi, K Okagawa. A prospective analysis of subacute thyroid dysfunction after neck irradiation. Int J Radiat Oncol Biol Phys 1996; 34(2): 439–444
https://doi.org/10.1016/0360-3016(95)02079-9 pmid: 8567346
21 P Bhatti, LH Veiga, CM Ronckers, AJ Sigurdson, M Stovall, SA Smith, R Weathers, W Leisenring, AC Mertens, S Hammond, DL Friedman, JP Neglia, AT Meadows, SS Donaldson, CA Sklar, LL Robison, PD Inskip. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the childhood cancer survivor study. Radiat Res 2010; 174(6): 741–752
https://doi.org/10.1667/RR2240.1 pmid: 21128798
22 M Wijnen, MM van den Heuvel-Eibrink, M Medici, RP Peeters, AJ van der Lely, SJ Neggers. Risk factors for subsequent endocrine-related cancer in childhood cancer survivors. Endocr Relat Cancer 2016; 23(6): R299–R321
https://doi.org/10.1530/ERC-16-0113 pmid: 27229933
23 J Harris, B Barber, H Almarzouki, R Scrimger, J Romney, D O’Connell, M Urken, H Seikaly. Free thyroid transfer: short-term results of a novel procedure to prevent post-radiation hypothyroidism. Head Neck 2017; 39(6): 1234–1238
https://doi.org/10.1002/hed.24590 pmid: 27862538
[1] Ping Li, Ningxin Dong, Yu Zeng, Jie Liu, Xiaochen Tang, Junbang Wang, Wenjun Zhang, Shiguang Ye, Lili Zhou, Alex Hongsheng Chang, Aibin Liang. Chimeric antigen receptor T-cell therapy: a promising treatment modality for relapsed/refractory mantle cell lymphoma[J]. Front. Med., 2020, 14(6): 811-815.
[2] Lili Zhou, Ping Li, Shiguang Ye, Xiaochen Tang, Junbang Wang, Jie Liu, Aibin Liang. Different sites of extranodal involvement may affect the survival of patients with relapsed or refractory non-Hodgkin lymphoma after chimeric antigen receptor T cell therapy[J]. Front. Med., 2020, 14(6): 786-791.
[3] Xiaojun Huang, Qian Jiang, Jianda Hu, Jianyong Li, Jie Jin, Fanyi Meng, Zhixiang Shen, Ting Liu, Depei Wu, Jianmin Wang, Jianxiang Wang. Four-year follow-up of patients with imatinib-resistant or intolerant chronic myeloid leukemia receiving dasatinib: efficacy and safety[J]. Front. Med., 2019, 13(3): 344-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed