Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (3) : 534-548    https://doi.org/10.1007/s11684-022-0953-y
RESEARCH ARTICLE
Human menstrual blood-derived stem cells alleviate autoimmune hepatitis via JNK/MAPK signaling pathway in vivo and in vitro
Fen Zhang1, Lanlan Xiao1, Ya Yang1, Menghao Zhou1, Yalei Zhao1,2, Zhongyang Xie1, Xiaoxi Ouyang1, Feiyang Ji3, Shima Tang1, Lanjuan Li1()
1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
2. Department of Infectious Diseases, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710049, China
3. Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, Hangzhou 310016, China
 Download: PDF(9892 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Autoimmune hepatitis (AIH) is a severe globally distributed liver disease that could occur at any age. Human menstrual blood-derived stem cells (MenSCs) have shown therapeutic effect in acute lung injury and liver failure. However, their role in the curative effect of AIH remains unclear. Here, a classic AIH mouse model was constructed through intravenous injection with concanavalin A (Con A). MenSCs were intravenously injected while Con A injection in the treatment groups. The results showed that the mortality by Con A injection was significantly decreased by MenSCs treatment and liver function tests and histological analysis were also ameliorated. The results of phosphoproteomic analysis and RNA-seq revealed that MenSCs improved AIH, mainly by apoptosis and c-Jun N-terminal kinase/mitogen-activated protein signaling pathways. Apoptosis analysis demonstrated that the protein expression of cleaved caspase 3 was increased by Con A injection and reduced by MenSCs transplantation, consistent with the TUNEL staining results. An AML12 co-culture system and JNK inhibitor (SP600125) were used to verify the JNK/MAPK and apoptosis signaling pathways. These findings suggested that MenSCs could be a promising strategy for AIH.

Keywords autoimmune hepatitis (AIH)      concanavalin A (Con A)      human menstrual blood-derived stem cells (MenSCs)      apoptosis      mitogen-activated protein kinase (MAPK)     
Corresponding Author(s): Lanjuan Li   
Just Accepted Date: 20 February 2023   Online First Date: 07 April 2023    Issue Date: 28 July 2023
 Cite this article:   
Fen Zhang,Lanlan Xiao,Ya Yang, et al. Human menstrual blood-derived stem cells alleviate autoimmune hepatitis via JNK/MAPK signaling pathway in vivo and in vitro[J]. Front. Med., 2023, 17(3): 534-548.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0953-y
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I3/534
Fig.1  Established Con A-induced AIH mouse model. (A) H&E staining. (B) Histological activity index (HAI) of 15 mg/kg Con A and 20 mg/kg Con A (n = 3 per group, **P < 0.01). (C and D) Serum ALT and AST levels of NC and Con A groups at different timepoints (n = 7 per NC group, Con A group at 6, 12, and 24 h; n = 4 per Con A group at 48, 72, and 96 h). (E) H&E staining of Con A group at 6, 12, 24, 48, 72, and 96 h (scale bar, 250 μm or 50 μm; the black circle indicated dead hepatocytes; the green arrows indicated immune cells). Data are represented as mean ± SD.
Fig.2  Amelioration of Con A-induced hepatitis by MenSCs transplantation. (A) Survival rate of Con A (20 mg/kg) group compared with that of Con A + MenSCs (20 mg/kg) and NC + MenSCs groups (n = 12 per group, **P < 0.01). (B) Representative images of liver sections stained with H&E. (C) HAI at different timepoints (n = 5 per group; scale bar, 250 μm or 50 μm). (D and E) Serum ALT and AST levels of Con A and Con A + MenSCs groups at three timepoints (n = 7 per group, Con A group vs. Con A + MenSCs group, *P < 0.05 and **P < 0.01). Data are represented as mean ± SD.
Fig.3  Quantitative profiling of phosphoproteomic among NC, Con A, and Con A + MenSCs groups at 12 h. (A) Principal component analysis of phosphoproteome. (B) Number of sites and proteins identified in phosphoproteome. (C) Interaction network of 57 proteins. (D–G) Bubble diagram representing the top 10 enriched KEGG, BP, MF, and CC pathways in the phosphoproteome among the three groups, respectively. (H) Number of differentially expressed proteins and sites in different groups. (I) Venn diagram of phosphorylation sites and seven overlap sites (n = 3 per NC and Con A + MenSCs groups; n = 4 per Con A group).
Fig.4  Functional analysis of RNA-seq among NC, Con A, and Con A + MenSCs groups at 12 h. (A and B) Volcano plot and KEGG analysis between Con A and NC groups at 12 h. (C and D) Volcano plot and KEGG analysis between Con A and Con A + MenSCs groups at 12 h (n = 3 per group).
Fig.5  Reduction in Con A-induced hepatitis by MenSCs transplantation through apoptosis signaling pathway. (A and B) TUNEL staining of NC, Con A, and Con A + MenSCs groups at 12 h (n = 5 per group, ** P < 0.01). (C–H) Western blot analysis of caspase 3, cleaved-caspase 3, Bad, Bcl-xL, caspase 8, cleaved-caspase 8, PARP, cleaved PARP, and GAPDH protein expression levels in the NC, Con A, and Con A + MenSCs groups at 12 h (n = 4 per group; *P < 0.05 and **P < 0.01). Data are represented as mean ± SD.
Fig.6  Improvement in Con A-induced apoptosis by MenSCs transplantation through inhibiting the JNK/MAPK pathway. (A–F) Western blot analysis of AKT, p-AKT, JNK, p-JNK, p-c-Jun ser73, p-c-Jun ser63, Fas, and GAPDH protein expression levels in the NC, Con A, and Con A + MenSCs groups at 12 h (n = 4 per group; *P < 0.05 and **P < 0.01). Data are represented as mean ± SD.
Fig.7  AML12 cell coculture system validation of MenSCs’ curative effect in Con A model. (A) Flowchart of coculture system. (B–E) Apoptosis of AML12 cells in the NC, Con A, and Con A + MenSCs groups as detected by flow cytometry (early apoptosis, Annexin V positive; end-stage apoptosis and death, Annexin V and PI positive, n = 4 per group). (F and G) Cellular supernatant ALT and AST levels of AML12 cells in the NC group, Con A, and Con A + MenSCs groups (n = 4 per group). (H–L) Western blot analysis of JNK, p-JNK, caspase 3, cleaved caspase 3, p-c-Jun ser73, p-c-Jun ser63, and GAPDH. G and H, Relative protein levels of p-JNK and cleaved caspase 3 (n = 3 per group). *P < 0.05 and **P < 0.01. Data are represented as mean ± SD.
Fig.8  SP600125 inhibition of Con A-activated JNK/MAPK signaling pathway. (A) Representative images of liver sections stained with H&E. (B) HAI in the NC, Con A and Con A + SP groups (scale bars, 250 or 50 μm). (C and D) Serum ALT and AST levels of AML12 cells in the NC, Con A, and Con A + MenSCs groups. (E–I) Western blot analysis of JNK, p-JNK, p-c-Jun ser63, p-c-Jun ser73, caspase 3, cleaved caspase 3, and GAPDH protein expression levels in the NC, Con A, and Con A + SP groups. (J–L) FasL, IL-6, and TNF-α mRNA levels in the NC, Con A, and Con A + SP groups. (M and N) Serum IL-6 and TNF-α concentrations in the NC, Con A, and Con A + SP groups (n = 3 per group, *P < 0.05 and **P < 0.01). Data are represented as mean ± SD.
1 G Mieli-Vergani, D Vergani, AJ Czaja, MP Manns, EL Krawitt, JM Vierling, AW Lohse, AJ Montano-Loza. Autoimmune hepatitis. Nat Rev Dis Primers 2018; 4(1): 18017
https://doi.org/10.1038/nrdp.2018.17 pmid: 29644994
2 V Smolka, O Tkachyk, J Ehrmann, E Karaskova, M Zapalka, J Volejnikova. Acute onset of autoimmune hepatitis in children and adolescents. Hepatobiliary Pancreat Dis Int 2020; 19(1): 17–21
https://doi.org/10.1016/j.hbpd.2019.08.004 pmid: 31474443
3 T Mühling, H Rohrbach, W Schepp, F Gundling. Overlap of concurrent extrahepatic autoimmune diseases is associated with milder disease severity of newly diagnosed autoimmune hepatitis. Hepatobiliary Pancreat Dis Int 2021; 20(1): 21–27
https://doi.org/10.1016/j.hbpd.2020.06.019 pmid: 32830050
4 AJ Friedenstein, KV Petrakova, AI Kurolesova, GP Frolova. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6(2): 230–247
https://doi.org/10.1097/00007890-196803000-00009 pmid: 5654088
5 L Chen, C Zhang, L Chen, X Wang, B Xiang, X Wu, Y Guo, X Mou, L Yuan, B Chen, J Wang, C Xiang. Human Menstrual blood-derived stem cells ameliorate liver fibrosis in mice by targeting hepatic stellate cells via paracrine mediators. Stem Cells Transl Med 2017; 6(1): 272–284
https://doi.org/10.5966/sctm.2015-0265 pmid: 28170193
6 M Bai, L Zhang, B Fu, J Bai, Y Zhang, G Cai, X Bai, Z Feng, S Sun, X Chen. IL-17A improves the efficacy of mesenchymal stem cells in ischemic-reperfusion renal injury by increasing Treg percentages by the COX-2/PGE2 pathway. Kidney Int 2018; 93(4): 814–825
https://doi.org/10.1016/j.kint.2017.08.030 pmid: 29132705
7 CW Lee, YF Chen, HH Wu, OK Lee. Historical perspectives and advances in mesenchymal stem cell research for the treatment of liver diseases. Gastroenterology 2018; 154(1): 46–56
https://doi.org/10.1053/j.gastro.2017.09.049 pmid: 29107021
8 J Zhao, Y Li, R Jia, J Wang, M Shi, Y Wang. Mesenchymal stem cells-derived exosomes as dexamethasone delivery vehicles for autoimmune hepatitis therapy. Front Bioeng Biotechnol 2021; 9: 650376
https://doi.org/10.3389/fbioe.2021.650376 pmid: 33859980
9 ZK Chen, DZ Chen, C Cai, LL Jin, J Xu, YL Tu, XZ Huang, JL Xu, MZ Chen, FB Xue, XL Lan, XD Wang, YL Ge, HL Sun, YP Chen. BMSCs attenuate hepatic fibrosis in autoimmune hepatitis through regulation of LMO7-AP1-TGFβ signaling pathway. Eur Rev Med Pharmacol Sci 2021; 25(3): 1600–1611
pmid: 33629329
10 L Chen, FB Lu, DZ Chen, JL Wu, ED Hu, LM Xu, MH Zheng, H Li, Y Huang, XY Jin, YW Gong, Z Lin, XD Wang, YP Chen. BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis. Mol. Immunol 2018; 93: 38–46
https://doi.org/10.1016/j.molimm.2017.11.008 pmid: 29145157
11 DE Rodríguez-Fuentes, LE Fernández-Garza, JA Samia-Meza, SA Barrera-Barrera, AI Caplan, HA Barrera-Saldaña. Mesenchymal stem cells current clinical applications: a systematic review. Arch Med Res 2021; 52(1): 93–101
https://doi.org/10.1016/j.arcmed.2020.08.006 pmid: 32977984
12 X Wu, Y Luo, J Chen, R Pan, B Xiang, X Du, L Xiang, J Shao, C Xiang. Transplantation of human menstrual blood progenitor cells improves hyperglycemia by promoting endogenous progenitor differentiation in type 1 diabetic mice. Stem Cells Dev 2014; 23(11): 1245–1257
https://doi.org/10.1089/scd.2013.0390 pmid: 24499421
13 B Xiang, L Chen, X Wang, Y Zhao, Y Wang, C Xiang. Transplantation of menstrual blood-derived mesenchymal stem cells promotes the repair of LPS-induced acute lung injury. Int J Mol Sci 2017; 18(4): E689
https://doi.org/10.3390/ijms18040689 pmid: 28346367
14 H Cao, J Yang, J Yu, Q Pan, J Li, P Zhou, Y Li, X Pan, J Li, Y Wang, L Li. Therapeutic potential of transplanted placental mesenchymal stem cells in treating Chinese miniature pigs with acute liver failure. BMC Med 2012; 10(1): 56
https://doi.org/10.1186/1741-7015-10-56 pmid: 22673529
15 HX Wang, M Liu, SY Weng, JJ Li, C Xie, HL He, W Guan, YS Yuan, J Gao. Immune mechanisms of concanavalin A model of autoimmune hepatitis. World J Gastroenterol 2012; 18(2): 119–125
https://doi.org/10.3748/wjg.v18.i2.119 pmid: 22253517
16 J Hao, W Sun, H Xu. Pathogenesis of concanavalin A induced autoimmune hepatitis in mice. Int Immunopharmacol 2022; 102: 108411
https://doi.org/10.1016/j.intimp.2021.108411 pmid: 34891001
17 G Tiegs, J Hentschel, A Wendel. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 1992; 90(1): 196–203
https://doi.org/10.1172/JCI115836 pmid: 1634608
18 Q Yu, T Liu, S Li, J Feng, L Wu, W Wang, K Chen, Y Xia, P Niu, L Xu, F Wang, W Dai, Y Zhou, C Guo. The protective effects of levo-tetrahydropalmatine on ConA-induced liver injury are via TRAF6/JNK signaling. Mediators Inflamm 2018; 2018: 4032484
https://doi.org/10.1155/2018/4032484 pmid: 30622431
19 DS El-Agamy, AA Shaaban, HH Almaramhy, S Elkablawy, MA Elkablawy. Pristimerin as a novel hepatoprotective agent against experimental autoimmune hepatitis. Front Pharmacol 2018; 9: 292
https://doi.org/10.3389/fphar.2018.00292 pmid: 29643811
20 MC Maiuri, E Zalckvar, A Kimchi, G Kroemer. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8(9): 741–752
https://doi.org/10.1038/nrm2239 pmid: 17717517
21 J Yue, JM López. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci 2020; 21(7): E2346
https://doi.org/10.3390/ijms21072346 pmid: 32231094
22 Y Deng, X Ren, L Yang, Y Lin, X Wu. A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell 2003; 115(1): 61–70
https://doi.org/10.1016/S0092-8674(03)00757-8 pmid: 14532003
23 BL Bennett, DT Sasaki, BW Murray, EC O’Leary, ST Sakata, W Xu, JC Leisten, A Motiwala, S Pierce, Y Satoh, SS Bhagwat, AM Manning, DW Anderson. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 2001; 98(24): 13681–13686
https://doi.org/10.1073/pnas.251194298 pmid: 11717429
24 X Wu, Y Luo, J Chen, R Pan, B Xiang, X Du, L Xiang, J Shao, C Xiang. Transplantation of human menstrual blood progenitor cells improves hyperglycemia by promoting endogenous progenitor differentiation in type 1 diabetic mice. Stem Cells Dev 2014; 23(11): 1245–1257
https://doi.org/10.1089/scd.2013.0390 pmid: 24499421
25 H Diao, S Kon, K Iwabuchi, C Kimura, J Morimoto, D Ito, T Segawa, M Maeda, J Hamuro, T Nakayama, M Taniguchi, H Yagita, Kaer L Van, K Onóe, D Denhardt, S Rittling, T Uede. Osteopontin as a mediator of NKT cell function in T cell-mediated liver diseases. Immunity 2004; 21(4): 539–550
https://doi.org/10.1016/j.immuni.2004.08.012 pmid: 15485631
26 S Li, X Zhong, X Kan, L Gu, H Sun, G Zhang, X Liu. De novo transcriptome analysis of Thitarodes jiachaensis before and after infection by the caterpillar fungus, Ophiocordyceps sinensis. Gene 2016; 580(2): 96–103
https://doi.org/10.1016/j.gene.2016.01.007 pmid: 26778205
27 X Mao, T Cai, JG Olyarchuk, L Wei. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005; 21(19): 3787–3793
https://doi.org/10.1093/bioinformatics/bti430 pmid: 15817693
28 M KanehisaM ArakiS GotoM HattoriM Hirakawa M ItohT KatayamaS KawashimaS OkudaT TokimatsuY Yamanishi. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008; 36(Database issue): D480–D484
pmid: 18077471
29 T Ye, T Wang, X Yang, X Fan, M Wen, Y Shen, X Xi, R Men, L Yang. Comparison of concanavalin A-induced murine autoimmune hepatitis models. Cell Physiol Biochem 2018; 46(3): 1241–1251
https://doi.org/10.1159/000489074 pmid: 29672295
30 X Meng, TE Ichim, J Zhong, A Rogers, Z Yin, J Jackson, H Wang, W Ge, V Bogin, KW Chan, B Thébaud, NH Riordan. Endometrial regenerative cells: a novel stem cell population. J Transl Med 2007; 5(1): 57
https://doi.org/10.1186/1479-5876-5-57 pmid: 18005405
31 J Chen, X Du, Q Chen, C Xiang. Effects of donors’ age and passage number on the biological characteristics of menstrual blood-derived stem cells. Int J Clin Exp Pathol 2015; 8(11): 14584–14595
pmid: 26823782
32 CE Gargett, KE Schwab, JA Deane. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 2016; 22(2): 137–163
pmid: 26552890
33 J Cuenca, A Le-Gatt, V Castillo, J Belletti, M Díaz, G M Kurte, PL Gonzalez, F Alcayaga-Miranda, CMAP Schuh, F Ezquer, M Ezquer, M Khoury. The reparative abilities of menstrual stem cells modulate the wound matrix signals and improve cutaneous regeneration. Front Physiol 2018; 9: 464
https://doi.org/10.3389/fphys.2018.00464 pmid: 29867527
34 P Luz-Crawford, MJ Torres, D Noël, A Fernandez, K Toupet, F Alcayaga-Miranda, G Tejedor, C Jorgensen, SE Illanes, FE Figueroa, F Djouad, M Khoury. The immunosuppressive signature of menstrual blood mesenchymal stem cells entails opposite effects on experimental arthritis and graft versus host diseases. Stem Cells 2016; 34(2): 456–469
https://doi.org/10.1002/stem.2244 pmid: 26528946
35 M Irwin, M Tare, A Singh, OR Puli, N Gogia, M Riccetti, P Deshpande, M Kango-Singh, A Singh. A positive feedback loop of Hippo- and c-Jun-amino-terminal kinase signaling pathways regulates amyloid-beta-mediated neurodegeneration. Front Cell Dev Biol 2020; 8: 117
https://doi.org/10.3389/fcell.2020.00117 pmid: 32232042
36 N Gogia, A Sarkar, AS Mehta, N Ramesh, P Deshpande, M Kango-Singh, UB Pandey, A Singh. Inactivation of Hippo and cJun-N-terminal kinase (JNK) signaling mitigate FUS mediated neurodegeneration in vivo. Neurobiol Dis 2020; 140: 104837
https://doi.org/10.1016/j.nbd.2020.104837 pmid: 32199908
37 AO Babamale, ST Chen. Nod-like receptors: critical intracellular sensors for host protection and cell death in microbial and parasitic infections. Int J Mol Sci 2021; 22(21): 11398
https://doi.org/10.3390/ijms222111398 pmid: 34768828
38 RJ Henning, M Bourgeois, RD Harbison. Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors: mechanisms of action and role in cardiovascular disorders. Cardiovasc Toxicol 2018; 18(6): 493–506
https://doi.org/10.1007/s12012-018-9462-2 pmid: 29968072
39 T Sairanen, R Szepesi, ML Karjalainen-Lindsberg, J Saksi, A Paetau, PJ Lindsberg. Neuronal caspase-3 and PARP-1 correlate differentially with apoptosis and necrosis in ischemic human stroke. Acta Neuropathol 2009; 118(4): 541–552
https://doi.org/10.1007/s00401-009-0559-3 pmid: 19529948
40 Z Jin, WS El-Deiry. Overview of cell death signaling pathways. Cancer Biol Ther 2005; 4(2): 139–163
https://doi.org/10.4161/cbt.4.2.1508 pmid: 15725726
41 JA Engelman, J Luo, LC Cantley. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006; 7(8): 606–619
https://doi.org/10.1038/nrg1879 pmid: 16847462
42 SC Herrera, EA Bach. The emerging roles of JNK signaling in Drosophila stem cell homeostasis. Int J Mol Sci 2021; 22(11): 5519
https://doi.org/10.3390/ijms22115519 pmid: 34073743
43 S Yin, Q Shi, W Shao, C Zhang, Y Zhang, X Qiu, J Huang. Hepatocyte-derived Igκ exerts a protective effect against ConA-induced acute liver injury. Int J Mol Sci 2020; 21(24): E9379
https://doi.org/10.3390/ijms21249379 pmid: 33317072
44 DH El-Kashef, RS Abdelrahman. Montelukast ameliorates concanavalin A-induced autoimmune hepatitis in mice via inhibiting TNF-α/JNK signaling pathway. Toxicol Appl Pharmacol 2020; 393: 114931
https://doi.org/10.1016/j.taap.2020.114931 pmid: 32109511
45 X Li, Y Zhang, Y Liang, Y Cui, SC Yeung, MS Ip, HF Tse, Q Lian, JC Mak. iPSC-derived mesenchymal stem cells exert SCF-dependent recovery of cigarette smoke-induced apoptosis/proliferation imbalance in airway cells. J Cell Mol Med 2017; 21(2): 265–277
https://doi.org/10.1111/jcmm.12962 pmid: 27641240
46 X Li, Y Hong, H He, G Jiang, W You, X Liang, Q Fu, S Han, Q Lian, Y Zhang. FGF21 mediates mesenchymal stem cell senescence via regulation of mitochondrial dynamics. Oxid Med Cell Longev 2019; 2019: 4915149
https://doi.org/10.1155/2019/4915149 pmid: 31178962
47 CL Li, Y Leng, B Zhao, C Gao, FF Du, N Jin, QZ Lian, SY Xu, GL Yan, JJ Xia, GH Zhuang, QL Fu, ZQ Qi. Human iPSC-MSC-derived xenografts modulate immune responses by inhibiting the cleavage of caspases. Stem Cells 2017; 35(7): 1719–1732
https://doi.org/10.1002/stem.2638 pmid: 28520232
48 Y Zheng, M Zhang, Y Zhao, J Chen, B Li, W Cai. JNK inhibitor SP600125 protects against lipopolysaccharide-induced acute lung injury via upregulation of claudin-4. Exp Ther Med 2014; 8(1): 153–158
https://doi.org/10.3892/etm.2014.1684 pmid: 24944614
49 DO Moon, YH Choi, GY Kim. Role of p21 in SP600125-induced cell cycle arrest, endoreduplication, and apoptosis. Cell Mol Life Sci 2011; 68(19): 3249–3260
https://doi.org/10.1007/s00018-011-0626-5 pmid: 21311948
50 Q Lian, Y Zhang, X Liang, F Gao, HF Tse. Directed differentiation of human-induced pluripotent stem cells to mesenchymal stem cells. Methods Mol Biol 2016; 1416: 289–298
https://doi.org/10.1007/978-1-4939-3584-0_17 pmid: 27236679
51 AJC Bloor, A Patel, JE Griffin, MH Gilleece, R Radia, DT Yeung, D Drier, LS Larson, GI Uenishi, D Hei, K Kelly, I Slukvin, JEJ Rasko. Production, safety and efficacy of iPSC-derived mesenchymal stromal cells in acute steroid-resistant graft versus host disease: a phase I, multicenter, open-label, dose-escalation study. Nat Med 2020; 26(11): 1720–1725
https://doi.org/10.1038/s41591-020-1050-x pmid: 32929265
52 L Chen, J Qu, T Cheng, X Chen, C Xiang. Menstrual blood-derived stem cells: toward therapeutic mechanisms, novel strategies, and future perspectives in the treatment of diseases. Stem Cell Res Ther 2019; 10(1): 406
https://doi.org/10.1186/s13287-019-1503-7 pmid: 31864423
[1] FMD-22030-OF-LLJ_suppl_1 Download
[1] Feifei Bao, Mengjie Liu, Wenhua Gai, Yuwei Hua, Jing Li, Chao Han, Ziyu Zai, Jiahuang Li, Zichun Hua. Bacteria-mediated tumor-targeted delivery of tumstatin (54-132) significantly suppresses tumor growth in mouse model by inhibiting angiogenesis and promoting apoptosis[J]. Front. Med., 2022, 16(6): 873-882.
[2] Shi-Yong Sun. Targeting apoptosis to manage acquired resistance to third generation EGFR inhibitors[J]. Front. Med., 2022, 16(5): 701-713.
[3] Qiuxia Han, Hanyu Zhu, Xiangmei Chen, Zhangsuo Liu. Non-genetic mechanisms of diabetic nephropathy[J]. Front. Med., 2017, 11(3): 319-332.
[4] Hui XIAO PhD, Ming TIAN MM, Junna GE MM, Xin Wei MD, Zhaoming LI MM, Xiaolan LI MS, Deding TAO PhD, Junbo HU MD, Jianping GONG MD, . The role of CDK1 siRNA interference in cell cycle and cell apoptosis[J]. Front. Med., 2009, 3(4): 384-389.
[5] Dixin LI MM , Hongbing ZENG MD , Chunyang JI MM , . Effect of pirfenidone on renal tubulointerstitial fibrosis[J]. Front. Med., 2009, 3(3): 316-322.
[6] Yuan ZHANG MD , Xiaoyan ZHANG MM , Yanhui LI MM , Xuan DU MM , Zehua WANG MD, PhD , Hongbo WANG MD , . Effects of phosphatidylinositol 3-kinase inhibitor on human cervical carcinoma cells [J]. Front. Med., 2009, 3(3): 341-346.
[7] Qiong CHEN, Qing YU, Yuhu SONG, Peiyuan Li, Ying CHANG, Zhijun WANG, Lifeng LIU, Wei WU, Jusheng LIN. Cloning of human XAF1 gene promoter and assay of its transcription activity in a variety of cell lines[J]. Front Med Chin, 2009, 3(2): 148-152.
[8] Jianwen REN, Zhenhui PENG, Birong GUO, Min PAN. Celecoxib in combination with retinoid CD437 inhibits melanoma A375 cell in vitro[J]. Front Med Chin, 2009, 3(1): 108-112.
[9] ZHANG Shilong, ZENG Fuqing, PENG Shibo, WANG Liang. Effect on proliferation and apoptosis of T24 cell lines via silencing DNMT1 with RNA interference[J]. Front. Med., 2008, 2(4): 374-379.
[10] ZHAN Rong, YU Qinghong, HUANG Haobo. Effect of arsenic trioxide on proliferation and apoptosis of U266 cells and its relationship with the expression variation of VEGF[J]. Front. Med., 2008, 2(4): 356-360.
[11] LU Yi, QU Bo, LIU Chang, YU Liang, Liu Xuemin, WANG Haohua, JIANG An, ZHANG Xiaogang. Mechanism of hepatocellular damage in rat caused by low serum selenium[J]. Front. Med., 2008, 2(3): 255-258.
[12] OUYANG Shan, ZHANG Qinghua, QIAO Fuyuan. Relationship between expression of hepatocyte grow factor and apoptosis of trophoblasts in hypertensive disorder complicating pregnancy[J]. Front. Med., 2007, 1(4): 386-389.
[13] SU Yuan, JIN Yang, ZHANG Xiaoju, ZHOU Qiong, BAI Ming, ZHU Liping. Impact of siRNA targeting pirh2 on proliferation and cell cycle control of the lung adenocarcinoma cell line A549[J]. Front. Med., 2007, 1(4): 359-363.
[14] CAO Jie, LI Wanglin, XIA Jie, TANG Weibiao, WANG Hui, CHEN Xiwen, XIAO Huanqing, LI Yuyuan, CHEN Xiaoping, DU Hong, CHEN Shanming. Absence of FHIT expression is associated with apoptosis inhibition in colorectal cancer[J]. Front. Med., 2007, 1(2): 147-156.
[15] TIAN Yongji, LI Guilin, GAO Jun, WANG Renzhi, KONG Yanguo, ZHANG Zhenxing, LI Shifang, TIAN Shiqiang, DOU Wanchen, ZHANG Bo. Construction of 6HRE-GFAP-Baxα system specific for glioma gene therapy[J]. Front. Med., 2007, 1(1): 49-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed