|
|
Decreasing complexity of glucose time series derived from continuous glucose monitoring is correlated with deteriorating glucose regulation |
Cheng Li1, Xiaojing Ma1, Jingyi Lu1, Rui Tao2, Xia Yu2, Yifei Mo1, Wei Lu1, Yuqian Bao1, Jian Zhou1( ), Weiping Jia1( ) |
1. Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China 2. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China |
|
|
Abstract Most information used to evaluate diabetic statuses is collected at a special time-point, such as taking fasting plasma glucose test and providing a limited view of individual’s health and disease risk. As a new parameter for continuously evaluating personal clinical statuses, the newly developed technique “continuous glucose monitoring” (CGM) can characterize glucose dynamics. By calculating the complexity of glucose time series index (CGI) with refined composite multi-scale entropy analysis of the CGM data, the study showed for the first time that the complexity of glucose time series in subjects decreased gradually from normal glucose tolerance to impaired glucose regulation and then to type 2 diabetes (P for trend < 0.01). Furthermore, CGI was significantly associated with various parameters such as insulin sensitivity/secretion (all P < 0.01), and multiple linear stepwise regression showed that the disposition index, which reflects β-cell function after adjusting for insulin sensitivity, was the only independent factor correlated with CGI (P < 0.01). Our findings indicate that the CGI derived from the CGM data may serve as a novel marker to evaluate glucose homeostasis.
|
Keywords
complexity of glucose time series
continuous glucose monitoring
impaired glucose regulation
insulin secretion and sensitivity
refined composite multi-scale entropy
|
Corresponding Author(s):
Jian Zhou,Weiping Jia
|
Just Accepted Date: 28 October 2022
Online First Date: 22 December 2022
Issue Date: 15 March 2023
|
|
1 |
W Jia, J Weng, D Zhu, L Ji, J Lu, Z Zhou, D Zou, L Guo, Q Ji, L Chen, L Chen, J Dou, X Guo, H Kuang, L Li, Q Li, X Li, J Liu, X Ran, L Shi, G Song, X Xiao, L Yang, Z; Chinese Diabetes Society Zhao. Standards of medical care for type 2 diabetes in China 2019. Diabetes Metab Res Rev 2019; 35(6): e3158
https://doi.org/10.1002/dmrr.3158
pmid: 30908791
|
2 |
J Lu, X Ma, J Zhou, L Zhang, Y Mo, L Ying, W Lu, W Zhu, Y Bao, RA Vigersky, W Jia. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care 2018; 41(11): 2370–2376
https://doi.org/10.2337/dc18-1131
pmid: 30201847
|
3 |
J Lu, X Ma, Y Shen, Q Wu, R Wang, L Zhang, Y Mo, W Lu, W Zhu, Y Bao, RA Vigersky, W Jia, J Zhou. Time in range is associated with carotid intima-media thickness in type 2 diabetes. Diabetes Technol Ther 2020; 22(2): 72–78
https://doi.org/10.1089/dia.2019.0251
pmid: 31524497
|
4 |
A Ceriello, L Monnier, D Owens. Glycaemic variability in diabetes: clinical and therapeutic implications. Lancet Diabetes Endocrinol 2019; 7(3): 221–230
https://doi.org/10.1016/S2213-8587(18)30136-0
pmid: 30115599
|
5 |
T Danne, R Nimri, T Battelino, RM Bergenstal, KL Close, JH DeVries, S Garg, L Heinemann, I Hirsch, SA Amiel, R Beck, E Bosi, B Buckingham, C Cobelli, E Dassau, FJ 3rd Doyle, S Heller, R Hovorka, W Jia, T Jones, O Kordonouri, B Kovatchev, A Kowalski, L Laffel, D Maahs, HR Murphy, K Nørgaard, CG Parkin, E Renard, B Saboo, M Scharf, WV Tamborlane, SA Weinzimer, M Phillip. International consensus on use of continuous glucose monitoring. Diabetes Care 2017; 40(12): 1631–1640
https://doi.org/10.2337/dc17-1600
pmid: 29162583
|
6 |
T Battelino, T Danne, RM Bergenstal, SA Amiel, R Beck, T Biester, E Bosi, BA Buckingham, WT Cefalu, KL Close, C Cobelli, E Dassau, JH DeVries, KC Donaghue, K Dovc, FJ 3rd Doyle, S Garg, G Grunberger, S Heller, L Heinemann, IB Hirsch, R Hovorka, W Jia, O Kordonouri, B Kovatchev, A Kowalski, L Laffel, B Levine, A Mayorov, C Mathieu, HR Murphy, R Nimri, K Nørgaard, CG Parkin, E Renard, D Rodbard, B Saboo, D Schatz, K Stoner, T Urakami, SA Weinzimer, M Phillip. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care 2019; 42(8): 1593–1603
https://doi.org/10.2337/dci19-0028
pmid: 31177185
|
7 |
D Rodbard. Glucose variability: a review of clinical applications and research developments. Diabetes Technol Ther 2018; 20(S2): S25–S215, S2–15
https://doi.org/10.1089/dia.2018.0092
pmid: 29916742
|
8 |
M Costa, AL Goldberger, CK Peng. Multiscale entropy analysis. Int J Numer Methods Eng 2004; 59(9): 1147–1166
https://doi.org/10.1002/nme.904
|
9 |
MD Costa, T Henriques, MN Munshi, AR Segal, AL Goldberger. Dynamical glucometry: use of multiscale entropy analysis in diabetes. Chaos 2014; 24(3): 033139
https://doi.org/10.1063/1.4894537
pmid: 25273219
|
10 |
JL Chen, PF Chen, HM Wang. Decreased complexity of glucose dynamics in diabetes: evidence from multiscale entropy analysis of continuous glucose monitoring system data. Am J Physiol Regul Integr Comp Physiol 2014; 307(2): R179–R183
https://doi.org/10.1152/ajpregu.00108.2014
pmid: 24808497
|
11 |
AG Tabák, C Herder, W Rathmann, EJ Brunner, M Kivimäki. Prediabetes: a high-risk state for diabetes development. Lancet 2012; 379(9833): 2279–2290
https://doi.org/10.1016/S0140-6736(12)60283-9
pmid: 22683128
|
12 |
G Acciaroli, G Sparacino, L Hakaste, A Facchinetti, GM Di Nunzio, A Palombit, T Tuomi, R Gabriel, J Aranda, S Vega, C Cobelli. Diabetes and prediabetes classification using glycemic variability indices from continuous glucose monitoring data. J Diabetes Sci Technol 2018; 12(1): 105–113
https://doi.org/10.1177/1932296817710478
pmid: 28569077
|
13 |
N Chakarova, R Dimova, G Grozeva, T Tankova. Assessment of glucose variability in subjects with prediabetes. Diabetes Res Clin Pract 2019; 151: 56–64
https://doi.org/10.1016/j.diabres.2019.03.038
pmid: 30935927
|
14 |
C Wang, L Lv, Y Yang, D Chen, G Liu, L Chen, Y Song, L He, X Li, H Tian, W Jia, X Ran. Glucose fluctuations in subjects with normal glucose tolerance, impaired glucose regulation and newly diagnosed type 2 diabetes mellitus. Clin Endocrinol (Oxf) 2012; 76(6): 810–815
https://doi.org/10.1111/j.1365-2265.2011.04205.x
pmid: 21854404
|
15 |
C Li, X Ma, J Yin, Y Mo, L Zhang, J Lu, W Lu, Y Bao, RA Vigersky, J Zhou, W Jia. The dawn phenomenon across the glycemic continuum: implications for defining dysglycemia. Diabetes Res Clin Pract 2020; 166: 108308
https://doi.org/10.1016/j.diabres.2020.108308
pmid: 32650035
|
16 |
SD Wu, CW Wu, SG Lin, KY Lee, CK Peng. Analysis of complex time series using refined composite multiscale entropy. Phys Lett A 2014; 378(20): 1369–1374
https://doi.org/10.1016/j.physleta.2014.03.034
|
17 |
J Zhou, H Li, X Ran, W Yang, Q Li, Y Peng, Y Li, X Gao, X Luan, W Wang, W Jia. Reference values for continuous glucose monitoring in Chinese subjects. Diabetes Care 2009; 32(7): 1188–1193
https://doi.org/10.2337/dc09-0076
pmid: 19389816
|
18 |
J Zhou, Y Mo, H Li, X Ran, W Yang, Q Li, Y Peng, Y Li, X Gao, X Luan, W Wang, Y Xie, W Jia. Relationship between HbA1c and continuous glucose monitoring in Chinese population: a multicenter study. PLoS One 2013; 8(12): e83827
https://doi.org/10.1371/journal.pone.0083827
pmid: 24376762
|
19 |
Diabetes Association American. Standards of medical care in diabetes−2007. Diabetes Care 2007; 30(Suppl 1): S4–S41
https://doi.org/10.2337/dc07-S004
pmid: 17192377
|
20 |
DR Matthews, JP Hosker, AS Rudenski, BA Naylor, DF Treacher, RC Turner. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28(7): 412–419
https://doi.org/10.1007/BF00280883
pmid: 3899825
|
21 |
J Cederholm, L Wibell. Insulin release and peripheral sensitivity at the oral glucose tolerance test. Diabetes Res Clin Pract 1990; 10(2): 167–175
https://doi.org/10.1016/0168-8227(90)90040-Z
pmid: 2261853
|
22 |
C Li, H Yang, G Tong, S Shen, W Feng, Y Bi, D Zhu. Correlations between A1c, fasting glucose, 2 h postload glucose, and β-cell function in the Chinese population. Acta Diabetol 2014; 51(4): 601–608
https://doi.org/10.1007/s00592-014-0563-5
pmid: 24595519
|
23 |
KD Kohnert, P Heinke, L Vogt, P Augstein, A Thomas, E Salzsieder. Associations of blood glucose dynamics with antihyperglycemic treatment and glycemic variability in type 1 and type 2 diabetes. J Endocrinol Invest 2017; 40(11): 1201–1207
https://doi.org/10.1007/s40618-017-0682-2
pmid: 28484994
|
24 |
Y Lai, Z Zhang, P Li, X Liu, Y Liu, Y Xin, W Gu. Investigation of glucose fluctuations by approaches of multi-scale analysis. Med Biol Eng Comput 2018; 56(3): 505–514
https://doi.org/10.1007/s11517-017-1692-0
pmid: 28825208
|
25 |
KD Kohnert, P Heinke, L Vogt, P Augstein, E Salzsieder. Applications of variability analysis techniques for continuous glucose monitoring derived time series in diabetic patients. Front Physiol 2018; 9: 1257
https://doi.org/10.3389/fphys.2018.01257
pmid: 30237767
|
26 |
XD Zhang, D Pechter, L Yang, X Ping, Z Yao, R Zhang, X Shen, NX Li, J Connick, AR Nawrocki, M Chakravarthy, C Li. Decreased complexity of glucose dynamics preceding the onset of diabetes in mice and rats. PLoS One 2017; 12(9): e0182810
https://doi.org/10.1371/journal.pone.0182810
pmid: 28877180
|
27 |
RN Bergman, M Ader, K Huecking, G Van Citters. Accurate assessment of beta-cell function: the hyperbolic correction. Diabetes 2002; 51(Suppl 1): S212–S220
https://doi.org/10.2337/diabetes.51.2007.S212
pmid: 11815482
|
28 |
L Li, J Sun, L Ruan, Q Song. Time-series analysis of continuous glucose monitoring data to predict treatment efficacy in patients with T2DM. J Clin Endocrinol Metab 2021; 106(8): 2187–2197
https://doi.org/10.1210/clinem/dgab356
pmid: 34010405
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|