|
|
Low-carbohydrate diets lead to greater weight loss and better glucose homeostasis than exercise: a randomized clinical trial |
Lingli Cai, Jun Yin, Xiaojing Ma, Yifei Mo, Cheng Li, Wei Lu, Yuqian Bao, Jian Zhou( ), Weiping Jia( ) |
Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China |
|
|
Abstract Lifestyle interventions, including dietary adjustments and exercise, are important for obesity management. This study enrolled adults with overweight or obesity to explore whether either low-carbohydrate diet (LCD) or exercise is more effective in metabolism improvement. Forty-five eligible subjects were randomly divided into an LCD group (n=22) and an exercise group (EX, n=23). The subjects either adopted LCD (carbohydrate intake<50 g/day) or performed moderate-to-vigorous exercise (≥30 min/day) for 3 weeks. After the interventions, LCD led to a larger weight loss than EX (−3.56±0.37 kg vs. −1.24±0.39 kg, P<0.001), as well as a larger reduction in fat mass (−2.10±0.18 kg vs. −1.25±0.24 kg, P=0.007) and waist circumference (−5.25±0.52 cm vs. −3.45±0.38 cm, P=0.008). Both interventions reduced visceral and subcutaneous fat and improved liver steatosis and insulin resistance. Triglycerides decreased in both two groups, whereas low-density lipoprotein cholesterol increased in the LCD group but decreased in the EX group. Various glycemic parameters, including serum glycated albumin, mean sensor glucose, coefficient of variability (CV), and largest amplitude of glycemic excursions, substantially declined in the LCD group. Only CV slightly decreased after exercise. This pilot study suggested that the effects of LCD and exercise are similar in alleviating liver steatosis and insulin resistance. Compared with exercise, LCD might be more efficient for weight loss and glucose homeostasis in people with obesity.
|
Keywords
low-carbohydrate diet
obesity
nonalcoholic fatty liver disease
continuous glucose monitoring
mean sensor glucose
|
Corresponding Author(s):
Jian Zhou,Weiping Jia
|
Just Accepted Date: 13 May 2021
Online First Date: 01 June 2021
Issue Date: 18 June 2021
|
|
1 |
The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017; 377(1): 13–27
https://doi.org/10.1056/NEJMoa1614362
pmid: 28604169
|
2 |
AJ Nordmann, A Nordmann, M Briel, U Keller, WS Yancy Jr, BJ Brehm, HC Bucher. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166(3): 285–293
https://doi.org/10.1001/archinte.166.3.285
pmid: 16476868
|
3 |
LA Bazzano, T Hu, K Reynolds, L Yao, C Bunol, Y Liu, CS Chen, MJ Klag, PK Whelton, J He. Effects of low-carbohydrate and low-fat diets: a randomized trial. Ann Intern Med 2014; 161(5): 309–318
https://doi.org/10.7326/M14-0180
pmid: 25178568
|
4 |
HJ Zhang, J He, LL Pan, ZM Ma, CK Han, CS Chen, Z Chen, HW Han, S Chen, Q Sun, JF Zhang, ZB Li, SY Yang, XJ Li, XY Li. Effects of moderate and vigorous exercise on nonalcoholic fatty liver disease: a randomized clinical trial. JAMA Intern Med 2016; 176(8): 1074–1082
https://doi.org/10.1001/jamainternmed.2016.3202
pmid: 27379904
|
5 |
HT Chen, YC Chung, YJ Chen, SY Ho, HJ Wu. Effects of different types of exercise on body composition, muscle strength, and IGF-1 in the elderly with sarcopenic obesity. J Am Geriatr Soc 2017; 65(4): 827–832
https://doi.org/10.1111/jgs.14722
pmid: 28205203
|
6 |
AL Carlson, DM Mullen, RM Bergenstal. Clinical use of continuous glucose monitoring in adults with type 2 diabetes. Diabetes Technol Ther 2017; 19(S2): S4–S11
https://doi.org/10.1089/dia.2017.0024
pmid: 28541137
|
7 |
W Jia, J Weng, D Zhu, L Ji, J Lu, Z Zhou, D Zou, L Guo, Q Ji, L Chen, L Chen, J Dou, X Guo, H Kuang, L Li, Q Li, X Li, J Liu, X Ran, L Shi, G Song, X Xiao, L Yang, Z; Chinese Diabetes Society Zhao. Standards of medical care for type 2 diabetes in China 2019. Diabetes Metab Res Rev 2019; 35(6): e3158
https://doi.org/10.1002/dmrr.3158
pmid: 30908791
|
8 |
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33(Suppl 1): S62–S69
https://doi.org/10.2337/dc10-S062
pmid: 20042775
|
9 |
Chinese Nutrition Society. Chinese Dietary Guidelines Summary. 1st ed. Beijing: People’s Medical Publishing Press, 2016
|
10 |
J Hill, A Timmis. Exercise tolerance testing. BMJ 2002; 324(7345): 1084–1087
https://doi.org/10.1136/bmj.324.7345.1084
pmid: 11991917
|
11 |
SB Reeder, I Cruite, G Hamilton, CB Sirlin. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011; 34(4): 729–749
https://doi.org/10.1002/jmri.22580
pmid: 22025886
|
12 |
LL Qian, L Wu, L Zhang, J Zhang, J Zhou, YH Li, QC Fang, HT Li, WP Jia. Serum biomarkers combined with ultrasonography for early diagnosis of non-alcoholic fatty liver disease confirmed by magnetic resonance spectroscopy. Acta Pharmacol Sin 2020; 41(4): 554–560
https://doi.org/10.1038/s41401-019-0321-x
pmid: 31776449
|
13 |
LS Szczepaniak, P Nurenberg, D Leonard, JD Browning, JS Reingold, S Grundy, HH Hobbs, RL Dobbins. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005; 288(2): E462–E468
https://doi.org/10.1152/ajpendo.00064.2004
pmid: 15339742
|
14 |
G Merra, R Miranda, S Barrucco, P Gualtieri, M Mazza, E Moriconi, M Marchetti, TF Chang, A De Lorenzo, L Di Renzo. Very-low-calorie ketogenic diet with aminoacid supplement versus very low restricted-calorie diet for preserving muscle mass during weight loss: a pilot double-blind study. Eur Rev Med Pharmacol Sci 2016; 20(12): 2613–2621
pmid: 27383313
|
15 |
B Moreno, D Bellido, I Sajoux, A Goday, D Saavedra, AB Crujeiras, FF Casanueva. Comparison of a very low-calorie-ketogenic diet with a standard low-calorie diet in the treatment of obesity. Endocrine 2014; 47(3): 793–805
https://doi.org/10.1007/s12020-014-0192-3
pmid: 24584583
|
16 |
Y Hashimoto, T Fukuda, C Oyabu, M Tanaka, M Asano, M Yamazaki, M Fukui. Impact of low-carbohydrate diet on body composition: meta-analysis of randomized controlled studies. Obes Rev 2016; 17(6): 499–509
https://doi.org/10.1111/obr.12405
pmid: 27059106
|
17 |
I Shai, D Schwarzfuchs, Y Henkin, DR Shahar, S Witkow, I Greenberg, R Golan, D Fraser, A Bolotin, H Vardi, O Tangi-Rozental, R Zuk-Ramot, B Sarusi, D Brickner, Z Schwartz, E Sheiner, R Marko, E Katorza, J Thiery, GM Fiedler, M Blüher, M Stumvoll, MJ; the Dietary Intervention Randomized Controlled Trial (DIRECT) Group Stampfer. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 2008; 359(3): 229–241
https://doi.org/10.1056/NEJMoa0708681
pmid: 18635428
|
18 |
M Noakes, PR Foster, JB Keogh, AP James, JC Mamo, PM Clifton. Comparison of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk. Nutr Metab (Lond) 2006; 3(1): 7
https://doi.org/10.1186/1743-7075-3-7
pmid: 16403234
|
19 |
GD Brinkworth, M Noakes, PM Clifton, JD Buckley. Effects of a low carbohydrate weight loss diet on exercise capacity and tolerance in obese subjects. Obesity (Silver Spring) 2009; 17(10): 1916–1923
https://doi.org/10.1038/oby.2009.134
pmid: 19373224
|
20 |
MR Ruth, AM Port, M Shah, AC Bourland, NW Istfan, KP Nelson, N Gokce, CM Apovian. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism 2013; 62(12): 1779–1787
https://doi.org/10.1016/j.metabol.2013.07.006
pmid: 24075505
|
21 |
R Ramírez-Campillo, DC Andrade, C Campos-Jara, C Henríquez-Olguín, C Alvarez-Lepín, M Izquierdo. Regional fat changes induced by localized muscle endurance resistance training. J Strength Cond Res 2013; 27(8): 2219–2224
https://doi.org/10.1519/JSC.0b013e31827e8681
pmid: 23222084
|
22 |
G Gwinup, R Chelvam, T Steinberg. Thickness of subcutaneous fat and activity of underlying muscles. Ann Intern Med 1971; 74(3): 408–411
https://doi.org/10.7326/0003-4819-74-3-408
pmid: 5552114
|
23 |
MA Kostek, LS Pescatello, RL Seip, TJ Angelopoulos, PM Clarkson, PM Gordon, NM Moyna, PS Visich, RF Zoeller, PD Thompson, EP Hoffman, TB Price. Subcutaneous fat alterations resulting from an upper-body resistance training program. Med Sci Sports Exerc 2007; 39(7): 1177–1185
https://doi.org/10.1249/mss.0b0138058a5cb
pmid: 17596787
|
24 |
M Krotkiewski, A Aniansson, G Grimby, P Björntorp, L Sjöström. The effect of unilateral isokinetic strength training on local adipose and muscle tissue morphology, thickness, and enzymes. Eur J Appl Physiol Occup Physiol 1979; 42(4): 271–281
https://doi.org/10.1007/BF00423297
pmid: 161225
|
25 |
P Seshadri, N Iqbal. Low carbohydrate diets for weight loss: historical & environmental perspective. Indian J Med Res 2006; 123(6): 739–747
pmid: 16885595
|
26 |
U Rabast, KH Vornberger, M Ehl. Loss of weight, sodium and water in obese persons consuming a high- or low-carbohydrate diet. Ann Nutr Metab 1981; 25(6): 341–349
https://doi.org/10.1159/000176515
pmid: 7332312
|
27 |
GJ Azar, WL Bloom. Similarities of carbohydrate deficiency and fasting. II. Ketones, nonesterified fatty acids and nitrogen excretion. Arch Intern Med 1963; 112(3): 338–343
https://doi.org/10.1001/archinte.1963.03860030092007
pmid: 14045277
|
28 |
A Astrup, T Meinert Larsen, A Harper. Atkins and other low-carbohydrate diets: hoax or an effective tool for weight loss? Lancet 2004; 364(9437): 897–899
https://doi.org/10.1016/S0140-6736(04)16986-9
pmid: 15351198
|
29 |
CB Ebbeling, JF Swain, HA Feldman, WW Wong, DL Hachey, E Garcia-Lago, DS Ludwig. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA 2012; 307(24): 2627–2634
https://doi.org/10.1001/jama.2012.6607
pmid: 22735432
|
30 |
CB Ebbeling, HA Feldman, GL Klein, JMW Wong, L Bielak, SK Steltz, PK Luoto, RR Wolfe, WW Wong, DS Ludwig. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial. BMJ 2018; 363: k4583
https://doi.org/10.1136/bmj.k4583
pmid: 30429127
|
31 |
KD Hall, KY Chen, J Guo, YY Lam, RL Leibel, LE Mayer, ML Reitman, M Rosenbaum, SR Smith, BT Walsh, E Ravussin. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am J Clin Nutr 2016; 104(2): 324–333
https://doi.org/10.3945/ajcn.116.133561
pmid: 27385608
|
32 |
T Hu, L Yao, K Reynolds, T Niu, S Li, P Whelton, J He, L Bazzano. The effects of a low-carbohydrate diet on appetite: a randomized controlled trial. Nutr Metab Cardiovasc Dis 2016; 26(6): 476–488
https://doi.org/10.1016/j.numecd.2015.11.011
pmid: 26803589
|
33 |
AA Gibson, RV Seimon, CM Lee, J Ayre, J Franklin, TP Markovic, ID Caterson, A Sainsbury. Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obes Rev 2015; 16(1): 64–76
https://doi.org/10.1111/obr.12230
pmid: 25402637
|
34 |
AM Johnstone, GW Horgan, SD Murison, DM Bremner, GE Lobley. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am J Clin Nutr 2008; 87(1): 44–55
https://doi.org/10.1093/ajcn/87.1.44
pmid: 18175736
|
35 |
A Mardinoglu, H Wu, E Bjornson, C Zhang, A Hakkarainen, SM Räsänen, S Lee, RM Mancina, M Bergentall, KH Pietiläinen, S Söderlund, N Matikainen, M Ståhlman, PO Bergh, M Adiels, BD Piening, M Granér, N Lundbom, KJ Williams, S Romeo, J Nielsen, M Snyder, M Uhlén, G Bergström, R Perkins, HU Marschall, F Bäckhed, MR Taskinen, J Borén. An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab 2018; 27(3): 559–571.e5
https://doi.org/10.1016/j.cmet.2018.01.005
pmid: 29456073
|
36 |
JB Schwimmer, P Ugalde-Nicalo, JA Welsh, JE Angeles, M Cordero, KE Harlow, A Alazraki, J Durelle, J Knight-Scott, KP Newton, R Cleeton, C Knott, J Konomi, MS Middleton, C Travers, CB Sirlin, A Hernandez, A Sekkarie, C McCracken, MB Vos. Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: a randomized clinical trial. JAMA 2019; 321(3): 256–265
https://doi.org/10.1001/jama.2018.20579
pmid: 30667502
|
37 |
EC Jang, DW Jun, SM Lee, YK Cho, SB Ahn. Comparison of efficacy of low-carbohydrate and low-fat diet education programs in non-alcoholic fatty liver disease: a randomized controlled study. Hepatol Res 2018; 48(3): E22–E29
https://doi.org/10.1111/hepr.12918
pmid: 28593701
|
38 |
R Hashida, T Kawaguchi, M Bekki, M Omoto, H Matsuse, T Nago, Y Takano, T Ueno, H Koga, J George, N Shiba, T Torimura. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: a systematic review. J Hepatol 2017; 66(1): 142–152
https://doi.org/10.1016/j.jhep.2016.08.023
pmid: 27639843
|
39 |
SH Smith. Using albumin and prealbumin to assess nutritional status. Nursing 2017; 47(4): 65–66
https://doi.org/10.1097/01.NURSE.0000511805.83334.df
pmid: 28328780
|
40 |
J Tay, ND Luscombe-Marsh, CH Thompson, M Noakes, JD Buckley, GA Wittert, WS Yancy Jr, GD Brinkworth. A very low-carbohydrate, low-saturated fat diet for type 2 diabetes management: a randomized trial. Diabetes Care 2014; 37(11): 2909–2918
https://doi.org/10.2337/dc14-0845
pmid: 25071075
|
41 |
M Blaychfeld-Magnazi, N Reshef, T Zornitzki, Z Madar, H Knobler. The effect of a low-carbohydrate high-fat diet and ethnicity on daily glucose profile in type 2 diabetes determined by continuous glucose monitoring. Eur J Nutr 2020; 59(5): 1929–1936
https://doi.org/10.1007/s00394-019-02043-z
pmid: 31292751
|
42 |
J Tay, ND Luscombe-Marsh, CH Thompson, M Noakes, JD Buckley, GA Wittert, WS Yancy Jr, GD Brinkworth. Comparison of low- and high-carbohydrate diets for type 2 diabetes management: a randomized trial. Am J Clin Nutr 2015; 102(4): 780–790
https://doi.org/10.3945/ajcn.115.112581
pmid: 26224300
|
43 |
A Samkani, MJ Skytte, MN Thomsen, A Astrup, CF Deacon, JJ Holst, S Madsbad, JF Rehfeld, T Krarup, SB Haugaard. Acute effects of dietary carbohydrate restriction on glycemia, lipemia and appetite regulating hormones in normal-weight to obese subjects. Nutrients 2018; 10(9): 1285
https://doi.org/10.3390/nu10091285
pmid: 30213037
|
44 |
Y Hatamoto, R Goya, Y Yamada, E Yoshimura, S Nishimura, Y Higaki, H Tanaka. Effect of exercise timing on elevated postprandial glucose levels. J Appl Physiol (1985) 2017; 123(2): 278–284
https://doi.org/10.1152/japplphysiol.00608.2016
pmid: 28408695
|
45 |
L Sylow, M Kleinert, EA Richter, TE Jensen. Exercise-stimulated glucose uptake- regulation and implications for glycaemic control. Nat Rev Endocrinol 2017; 13(3): 133–148
https://doi.org/10.1038/nrendo.2016.162
pmid: 27739515
|
46 |
VW Wong, LA Adams, V de Lédinghen, GL Wong, S Sookoian. Noninvasive biomarkers in NAFLD and NASH—current progress and future promise. Nat Rev Gastroenterol Hepatol 2018; 15(8): 461–478
https://doi.org/10.1038/s41575-018-0014-9
pmid: 29844588
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|