Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (3) : 460-471    https://doi.org/10.1007/s11684-021-0861-6
RESEARCH ARTICLE
Low-carbohydrate diets lead to greater weight loss and better glucose homeostasis than exercise: a randomized clinical trial
Lingli Cai, Jun Yin, Xiaojing Ma, Yifei Mo, Cheng Li, Wei Lu, Yuqian Bao, Jian Zhou(), Weiping Jia()
Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
 Download: PDF(732 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lifestyle interventions, including dietary adjustments and exercise, are important for obesity management. This study enrolled adults with overweight or obesity to explore whether either low-carbohydrate diet (LCD) or exercise is more effective in metabolism improvement. Forty-five eligible subjects were randomly divided into an LCD group (n=22) and an exercise group (EX, n=23). The subjects either adopted LCD (carbohydrate intake<50 g/day) or performed moderate-to-vigorous exercise (≥30 min/day) for 3 weeks. After the interventions, LCD led to a larger weight loss than EX (−3.56±0.37 kg vs. −1.24±0.39 kg, P<0.001), as well as a larger reduction in fat mass (−2.10±0.18 kg vs. −1.25±0.24 kg, P=0.007) and waist circumference (−5.25±0.52 cm vs. −3.45±0.38 cm, P=0.008). Both interventions reduced visceral and subcutaneous fat and improved liver steatosis and insulin resistance. Triglycerides decreased in both two groups, whereas low-density lipoprotein cholesterol increased in the LCD group but decreased in the EX group. Various glycemic parameters, including serum glycated albumin, mean sensor glucose, coefficient of variability (CV), and largest amplitude of glycemic excursions, substantially declined in the LCD group. Only CV slightly decreased after exercise. This pilot study suggested that the effects of LCD and exercise are similar in alleviating liver steatosis and insulin resistance. Compared with exercise, LCD might be more efficient for weight loss and glucose homeostasis in people with obesity.

Keywords low-carbohydrate diet      obesity      nonalcoholic fatty liver disease      continuous glucose monitoring      mean sensor glucose     
Corresponding Author(s): Jian Zhou,Weiping Jia   
Just Accepted Date: 13 May 2021   Online First Date: 01 June 2021    Issue Date: 18 June 2021
 Cite this article:   
Lingli Cai,Jun Yin,Xiaojing Ma, et al. Low-carbohydrate diets lead to greater weight loss and better glucose homeostasis than exercise: a randomized clinical trial[J]. Front. Med., 2021, 15(3): 460-471.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0861-6
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I3/460
Fig.1  Study design schematic. 2hPG, 2-h plasma glucose; CGM, continuous glucose monitoring; EX, exercise group; FINS, fasting serum insulin; FPG, fasting plasma glucose; GA, serum glycated albumin; H, hip circumference; HbA1c, glycated hemoglobin A1c; LCD, low-carbohydrate diet group; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; OGTT, oral glucose tolerance test; T, thigh circumference; W, waist circumference.
Fig.2  Flowchart of subject recruitment.
Parameters LCD (n = 22) EX (n = 22) P value
Baseline Endpoint Change Baseline Endpoint Change
Age (year) 25.36±0.75 / / 24.27±0.43 / / /
Male/female 13/9 / / 16/6 / / /
Weight (kg) 83.76±3.18 80.20±3.05 −3.56±0.37 80.62±2.75 79.38±2.52 −1.24±0.39 <0.001
BMI (kg/m2) 27.85±0.75 26.68±0.75 −1.17±0.11 27.33±0.69 26.92±0.61 −0.41±0.13 <0.001
W (cm) 96.00±2.39 90.75±2.23 −5.25±0.52 94.59±1.87 91.14±1.77 −3.45±0.38 0.008
H (cm) 108.77±1.30 107.07±1.31 −1.70±0.51 107.82±1.21 106.00±1.15 −1.18±0.36 0.409
T (cm) 60.18±0.96 58.64±0.92 −1.55±0.32 58.93±0.91 57.68±0.81 −1.25±0.28 0.497
WHR 0.881±0.013 0. 846±0.013 −0.035±0.004 0.882±0.010 0.859±0.049 −0.023±0.004 0.036
VFA (cm2) 50.26±5.66 42.40±5.40 −7.87±1.22 48.18±4.08 37.82±3.41 −10.36±1.81 0.258
SFA (cm2) 286.08±20.87 262.91±22.52 −23.17±4.34 253.54±17.83 230.75±18.27 −22.79±5.78 0.959
FPG (mmol/L) 5.04±0.09 4.98±0.09 −0.06±0.13 5.08±0.12 5.07±0.13 −0.01±0.08 0.771
2hPG (mmol/L) 6.02±0.44 / / 5.98±0.28 / / /
FINS (μU/mL) 13.88±1.36 10.04±0.90 −3.84±0.98 16.41±1.98 11.60±1.36 −4.81±1.61 0.610
HOMA-IR 3.13±0.32 2.24±0.21 −0.89±0.22 3.79±0.51 2.69±0.36 −1.10±0.38 0.633
HbA1c (%) 5.30±0.06 5.28±0.05 −0.01±0.04 5.25±0.07 5.25±0.07 0.01±0.04 0.669
GA (%) 12.16±0.25 11.61±0.24 −0.55±0.17 12.21±0.15 12.18±0.20 −0.03±0.15 0.027
TC (mmol/L) 4.67±0.22 4.85±0.24 0.18±0.15 4.72±0.14 4.46±0.14 −0.26±0.10 0.023
TG (mmol/L) 1.16±0.13 0.81±0.12 −0.35±0.13 1.10±0.10 0.87±0.05 −0.23±0.10 0.480
HDL-c (mmol/L) 1.23±0.08 1.30±0.08 0.07±0.04 1.14±0.05 1.23±0.06 0.09±0.06 0.874
LDL-c (mmol/L) 2.68±0.19 2.97±0.21 0.29±0.12 2.95±0.14 2.71±0.14 −0.24±0.11 0.002
Tab.1  Anthropometric and biochemical assessments before and after the 3-week intervention
Fig.3  (A) Comparison of ?body weight during the study and changes of body composition including (B) ?Total body, (C) ?Trunk and (D) ?Limbs between the LCD (n = 22) and the EX (n = 22) groups. Data are reported as mean±SEM. **P<0.01, *** P<0.001.
Fig.4  (A) ?FPG, (B) ?FINS, and (C) ?HOMA-IR of the LCD group (n = 22) and the EX group (n = 22) during the study. Data are reported as mean±SEM. *P<0.05 compared with LCD.
Fig.5  (A) Trend of IHTC and (B) changes in IHTC in the subjects with NAFLD pre- and post-intervention in the LCD group (n = 12) and the EX group (n = 8). Data are reported as mean±SEM. *P<0.05, ***P<0.001.
Parameters LCD (n = 22) EX (n = 22) P value
Baseline Endpoint Change Baseline Endpoint Change
ALT (U/L) 24.50±3.78 17.23±2.57 −7.27±2.66 29.73±5.23 23.00±3.85 −6.73±2.70 0.886
AST (U/L) 19.86±1.56 18.91±1.50 −0.95±1.55 22.14±2.48 22.00±2.94 −0.14±2.76 0.797
AKP (U/L) 56.27±2.45 49.68±2.61 −6.59±1.84 57.86±2.51 58.09±3.58 0.23±1.65 0.009
γ-GT (U/L) 29.55±3.90 19.23±2.10 −10.32±2.22 30.00±3.73 23.68±2.67 −6.32±2.16 0.203
TP (g/L) 73.91±0.71 75.09±0.72 1.18±0.62 73.91±0.81 72.91±0.76 −1.00±0.51 0.009
ALB (g/L) 48.68±0.59 50.18±0.44 1.50±0.50 49.09±0.53 49.23±0.53 0.14±0.42 0.044
ALB/GLB 1.95±0.05 2.05±0.06 0.10±0.03 1.99±0.04 2.10±0.04 0.11±0.04 0.994
PALB (mg/L) 307.82±11.29 265.14±11.71 −42.68±7.70 314.73±11.35 288.86±13.71 −25.86±9.68 0.181
IHTC (%) 11.90±3.08 8.67±2.72 −3.23±0.78 10.80±3.28 7.50±2.69 −3.31±1.30 0.960
Tab.2  Liver function and intrahepatic triglyceride content before and after the 3-week intervention
Fig.6  (A) MSG curves, comparison of (B) 24 h MSG level, (C) daytime and nighttime MSG levels between the LCD group (n = 16) and the EX group (n = 16). Data are reported as mean±SEM. **P<0.01, ***P<0.001 compared with LCD; ##P<0.01, ###P<0.001 compared with day 0; !!!P<0.001 compared with day 22. Average, mean value of the whole intervention time.
1 The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017; 377(1): 13–27
https://doi.org/10.1056/NEJMoa1614362 pmid: 28604169
2 AJ Nordmann, A Nordmann, M Briel, U Keller, WS Yancy Jr, BJ Brehm, HC Bucher. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166(3): 285–293
https://doi.org/10.1001/archinte.166.3.285 pmid: 16476868
3 LA Bazzano, T Hu, K Reynolds, L Yao, C Bunol, Y Liu, CS Chen, MJ Klag, PK Whelton, J He. Effects of low-carbohydrate and low-fat diets: a randomized trial. Ann Intern Med 2014; 161(5): 309–318
https://doi.org/10.7326/M14-0180 pmid: 25178568
4 HJ Zhang, J He, LL Pan, ZM Ma, CK Han, CS Chen, Z Chen, HW Han, S Chen, Q Sun, JF Zhang, ZB Li, SY Yang, XJ Li, XY Li. Effects of moderate and vigorous exercise on nonalcoholic fatty liver disease: a randomized clinical trial. JAMA Intern Med 2016; 176(8): 1074–1082
https://doi.org/10.1001/jamainternmed.2016.3202 pmid: 27379904
5 HT Chen, YC Chung, YJ Chen, SY Ho, HJ Wu. Effects of different types of exercise on body composition, muscle strength, and IGF-1 in the elderly with sarcopenic obesity. J Am Geriatr Soc 2017; 65(4): 827–832
https://doi.org/10.1111/jgs.14722 pmid: 28205203
6 AL Carlson, DM Mullen, RM Bergenstal. Clinical use of continuous glucose monitoring in adults with type 2 diabetes. Diabetes Technol Ther 2017; 19(S2): S4–S11
https://doi.org/10.1089/dia.2017.0024 pmid: 28541137
7 W Jia, J Weng, D Zhu, L Ji, J Lu, Z Zhou, D Zou, L Guo, Q Ji, L Chen, L Chen, J Dou, X Guo, H Kuang, L Li, Q Li, X Li, J Liu, X Ran, L Shi, G Song, X Xiao, L Yang, Z; Chinese Diabetes Society Zhao. Standards of medical care for type 2 diabetes in China 2019. Diabetes Metab Res Rev 2019; 35(6): e3158
https://doi.org/10.1002/dmrr.3158 pmid: 30908791
8 American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33(Suppl 1): S62–S69
https://doi.org/10.2337/dc10-S062 pmid: 20042775
9 Chinese Nutrition Society. Chinese Dietary Guidelines Summary. 1st ed. Beijing: People’s Medical Publishing Press, 2016
10 J Hill, A Timmis. Exercise tolerance testing. BMJ 2002; 324(7345): 1084–1087
https://doi.org/10.1136/bmj.324.7345.1084 pmid: 11991917
11 SB Reeder, I Cruite, G Hamilton, CB Sirlin. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011; 34(4): 729–749
https://doi.org/10.1002/jmri.22580 pmid: 22025886
12 LL Qian, L Wu, L Zhang, J Zhang, J Zhou, YH Li, QC Fang, HT Li, WP Jia. Serum biomarkers combined with ultrasonography for early diagnosis of non-alcoholic fatty liver disease confirmed by magnetic resonance spectroscopy. Acta Pharmacol Sin 2020; 41(4): 554–560
https://doi.org/10.1038/s41401-019-0321-x pmid: 31776449
13 LS Szczepaniak, P Nurenberg, D Leonard, JD Browning, JS Reingold, S Grundy, HH Hobbs, RL Dobbins. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005; 288(2): E462–E468
https://doi.org/10.1152/ajpendo.00064.2004 pmid: 15339742
14 G Merra, R Miranda, S Barrucco, P Gualtieri, M Mazza, E Moriconi, M Marchetti, TF Chang, A De Lorenzo, L Di Renzo. Very-low-calorie ketogenic diet with aminoacid supplement versus very low restricted-calorie diet for preserving muscle mass during weight loss: a pilot double-blind study. Eur Rev Med Pharmacol Sci 2016; 20(12): 2613–2621
pmid: 27383313
15 B Moreno, D Bellido, I Sajoux, A Goday, D Saavedra, AB Crujeiras, FF Casanueva. Comparison of a very low-calorie-ketogenic diet with a standard low-calorie diet in the treatment of obesity. Endocrine 2014; 47(3): 793–805
https://doi.org/10.1007/s12020-014-0192-3 pmid: 24584583
16 Y Hashimoto, T Fukuda, C Oyabu, M Tanaka, M Asano, M Yamazaki, M Fukui. Impact of low-carbohydrate diet on body composition: meta-analysis of randomized controlled studies. Obes Rev 2016; 17(6): 499–509
https://doi.org/10.1111/obr.12405 pmid: 27059106
17 I Shai, D Schwarzfuchs, Y Henkin, DR Shahar, S Witkow, I Greenberg, R Golan, D Fraser, A Bolotin, H Vardi, O Tangi-Rozental, R Zuk-Ramot, B Sarusi, D Brickner, Z Schwartz, E Sheiner, R Marko, E Katorza, J Thiery, GM Fiedler, M Blüher, M Stumvoll, MJ; the Dietary Intervention Randomized Controlled Trial (DIRECT) Group Stampfer. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 2008; 359(3): 229–241
https://doi.org/10.1056/NEJMoa0708681 pmid: 18635428
18 M Noakes, PR Foster, JB Keogh, AP James, JC Mamo, PM Clifton. Comparison of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk. Nutr Metab (Lond) 2006; 3(1): 7
https://doi.org/10.1186/1743-7075-3-7 pmid: 16403234
19 GD Brinkworth, M Noakes, PM Clifton, JD Buckley. Effects of a low carbohydrate weight loss diet on exercise capacity and tolerance in obese subjects. Obesity (Silver Spring) 2009; 17(10): 1916–1923
https://doi.org/10.1038/oby.2009.134 pmid: 19373224
20 MR Ruth, AM Port, M Shah, AC Bourland, NW Istfan, KP Nelson, N Gokce, CM Apovian. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism 2013; 62(12): 1779–1787
https://doi.org/10.1016/j.metabol.2013.07.006 pmid: 24075505
21 R Ramírez-Campillo, DC Andrade, C Campos-Jara, C Henríquez-Olguín, C Alvarez-Lepín, M Izquierdo. Regional fat changes induced by localized muscle endurance resistance training. J Strength Cond Res 2013; 27(8): 2219–2224
https://doi.org/10.1519/JSC.0b013e31827e8681 pmid: 23222084
22 G Gwinup, R Chelvam, T Steinberg. Thickness of subcutaneous fat and activity of underlying muscles. Ann Intern Med 1971; 74(3): 408–411
https://doi.org/10.7326/0003-4819-74-3-408 pmid: 5552114
23 MA Kostek, LS Pescatello, RL Seip, TJ Angelopoulos, PM Clarkson, PM Gordon, NM Moyna, PS Visich, RF Zoeller, PD Thompson, EP Hoffman, TB Price. Subcutaneous fat alterations resulting from an upper-body resistance training program. Med Sci Sports Exerc 2007; 39(7): 1177–1185
https://doi.org/10.1249/mss.0b0138058a5cb pmid: 17596787
24 M Krotkiewski, A Aniansson, G Grimby, P Björntorp, L Sjöström. The effect of unilateral isokinetic strength training on local adipose and muscle tissue morphology, thickness, and enzymes. Eur J Appl Physiol Occup Physiol 1979; 42(4): 271–281
https://doi.org/10.1007/BF00423297 pmid: 161225
25 P Seshadri, N Iqbal. Low carbohydrate diets for weight loss: historical & environmental perspective. Indian J Med Res 2006; 123(6): 739–747
pmid: 16885595
26 U Rabast, KH Vornberger, M Ehl. Loss of weight, sodium and water in obese persons consuming a high- or low-carbohydrate diet. Ann Nutr Metab 1981; 25(6): 341–349
https://doi.org/10.1159/000176515 pmid: 7332312
27 GJ Azar, WL Bloom. Similarities of carbohydrate deficiency and fasting. II. Ketones, nonesterified fatty acids and nitrogen excretion. Arch Intern Med 1963; 112(3): 338–343
https://doi.org/10.1001/archinte.1963.03860030092007 pmid: 14045277
28 A Astrup, T Meinert Larsen, A Harper. Atkins and other low-carbohydrate diets: hoax or an effective tool for weight loss? Lancet 2004; 364(9437): 897–899
https://doi.org/10.1016/S0140-6736(04)16986-9 pmid: 15351198
29 CB Ebbeling, JF Swain, HA Feldman, WW Wong, DL Hachey, E Garcia-Lago, DS Ludwig. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA 2012; 307(24): 2627–2634
https://doi.org/10.1001/jama.2012.6607 pmid: 22735432
30 CB Ebbeling, HA Feldman, GL Klein, JMW Wong, L Bielak, SK Steltz, PK Luoto, RR Wolfe, WW Wong, DS Ludwig. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial. BMJ 2018; 363: k4583
https://doi.org/10.1136/bmj.k4583 pmid: 30429127
31 KD Hall, KY Chen, J Guo, YY Lam, RL Leibel, LE Mayer, ML Reitman, M Rosenbaum, SR Smith, BT Walsh, E Ravussin. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am J Clin Nutr 2016; 104(2): 324–333
https://doi.org/10.3945/ajcn.116.133561 pmid: 27385608
32 T Hu, L Yao, K Reynolds, T Niu, S Li, P Whelton, J He, L Bazzano. The effects of a low-carbohydrate diet on appetite: a randomized controlled trial. Nutr Metab Cardiovasc Dis 2016; 26(6): 476–488
https://doi.org/10.1016/j.numecd.2015.11.011 pmid: 26803589
33 AA Gibson, RV Seimon, CM Lee, J Ayre, J Franklin, TP Markovic, ID Caterson, A Sainsbury. Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obes Rev 2015; 16(1): 64–76
https://doi.org/10.1111/obr.12230 pmid: 25402637
34 AM Johnstone, GW Horgan, SD Murison, DM Bremner, GE Lobley. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am J Clin Nutr 2008; 87(1): 44–55
https://doi.org/10.1093/ajcn/87.1.44 pmid: 18175736
35 A Mardinoglu, H Wu, E Bjornson, C Zhang, A Hakkarainen, SM Räsänen, S Lee, RM Mancina, M Bergentall, KH Pietiläinen, S Söderlund, N Matikainen, M Ståhlman, PO Bergh, M Adiels, BD Piening, M Granér, N Lundbom, KJ Williams, S Romeo, J Nielsen, M Snyder, M Uhlén, G Bergström, R Perkins, HU Marschall, F Bäckhed, MR Taskinen, J Borén. An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab 2018; 27(3): 559–571.e5
https://doi.org/10.1016/j.cmet.2018.01.005 pmid: 29456073
36 JB Schwimmer, P Ugalde-Nicalo, JA Welsh, JE Angeles, M Cordero, KE Harlow, A Alazraki, J Durelle, J Knight-Scott, KP Newton, R Cleeton, C Knott, J Konomi, MS Middleton, C Travers, CB Sirlin, A Hernandez, A Sekkarie, C McCracken, MB Vos. Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: a randomized clinical trial. JAMA 2019; 321(3): 256–265
https://doi.org/10.1001/jama.2018.20579 pmid: 30667502
37 EC Jang, DW Jun, SM Lee, YK Cho, SB Ahn. Comparison of efficacy of low-carbohydrate and low-fat diet education programs in non-alcoholic fatty liver disease: a randomized controlled study. Hepatol Res 2018; 48(3): E22–E29
https://doi.org/10.1111/hepr.12918 pmid: 28593701
38 R Hashida, T Kawaguchi, M Bekki, M Omoto, H Matsuse, T Nago, Y Takano, T Ueno, H Koga, J George, N Shiba, T Torimura. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: a systematic review. J Hepatol 2017; 66(1): 142–152
https://doi.org/10.1016/j.jhep.2016.08.023 pmid: 27639843
39 SH Smith. Using albumin and prealbumin to assess nutritional status. Nursing 2017; 47(4): 65–66
https://doi.org/10.1097/01.NURSE.0000511805.83334.df pmid: 28328780
40 J Tay, ND Luscombe-Marsh, CH Thompson, M Noakes, JD Buckley, GA Wittert, WS Yancy Jr, GD Brinkworth. A very low-carbohydrate, low-saturated fat diet for type 2 diabetes management: a randomized trial. Diabetes Care 2014; 37(11): 2909–2918
https://doi.org/10.2337/dc14-0845 pmid: 25071075
41 M Blaychfeld-Magnazi, N Reshef, T Zornitzki, Z Madar, H Knobler. The effect of a low-carbohydrate high-fat diet and ethnicity on daily glucose profile in type 2 diabetes determined by continuous glucose monitoring. Eur J Nutr 2020; 59(5): 1929–1936
https://doi.org/10.1007/s00394-019-02043-z pmid: 31292751
42 J Tay, ND Luscombe-Marsh, CH Thompson, M Noakes, JD Buckley, GA Wittert, WS Yancy Jr, GD Brinkworth. Comparison of low- and high-carbohydrate diets for type 2 diabetes management: a randomized trial. Am J Clin Nutr 2015; 102(4): 780–790
https://doi.org/10.3945/ajcn.115.112581 pmid: 26224300
43 A Samkani, MJ Skytte, MN Thomsen, A Astrup, CF Deacon, JJ Holst, S Madsbad, JF Rehfeld, T Krarup, SB Haugaard. Acute effects of dietary carbohydrate restriction on glycemia, lipemia and appetite regulating hormones in normal-weight to obese subjects. Nutrients 2018; 10(9): 1285
https://doi.org/10.3390/nu10091285 pmid: 30213037
44 Y Hatamoto, R Goya, Y Yamada, E Yoshimura, S Nishimura, Y Higaki, H Tanaka. Effect of exercise timing on elevated postprandial glucose levels. J Appl Physiol (1985) 2017; 123(2): 278–284
https://doi.org/10.1152/japplphysiol.00608.2016 pmid: 28408695
45 L Sylow, M Kleinert, EA Richter, TE Jensen. Exercise-stimulated glucose uptake- regulation and implications for glycaemic control. Nat Rev Endocrinol 2017; 13(3): 133–148
https://doi.org/10.1038/nrendo.2016.162 pmid: 27739515
46 VW Wong, LA Adams, V de Lédinghen, GL Wong, S Sookoian. Noninvasive biomarkers in NAFLD and NASH—current progress and future promise. Nat Rev Gastroenterol Hepatol 2018; 15(8): 461–478
https://doi.org/10.1038/s41575-018-0014-9 pmid: 29844588
[1] So Jung Yang, Hun-Sung Kim, Kun-Ho Yoon. Analyzing the distinguishing factors that affect childhood obesity in South Korea[J]. Front. Med., 2018, 12(6): 707-716.
[2] Tiange Wang, Min Xu, Yufang Bi, Guang Ning. Interplay between diet and genetic susceptibility in obesity and related traits[J]. Front. Med., 2018, 12(6): 601-607.
[3] Eun Young Lee, Kun-Ho Yoon. Epidemic obesity in children and adolescents: risk factors and prevention[J]. Front. Med., 2018, 12(6): 658-666.
[4] Ruiting Han, Junli Ma, Houkai Li. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota[J]. Front. Med., 2018, 12(6): 645-657.
[5] Shasha Zhu, Huimin Zhang, Li Bai. NKT cells in liver diseases[J]. Front. Med., 2018, 12(3): 249-261.
[6] Meng Dong, Jun Lin, Wonchung Lim, Wanzhu Jin, Hyuek Jong Lee. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia[J]. Front. Med., 2018, 12(2): 130-138.
[7] Tianhua Xu, Zitong Sheng, Li Yao. Obesity-related glomerulopathy: pathogenesis, pathologic, clinical characteristics and treatment[J]. Front. Med., 2017, 11(3): 340-348.
[8] Rahim Ullah, Yan Su, Yi Shen, Chunlu Li, Xiaoqin Xu, Jianwei Zhang, Ke Huang, Naveed Rauf, Yang He, Jingjing Cheng, Huaping Qin, Yu-Dong Zhou, Junfen Fu. Postnatal feeding with high-fat diet induces obesity and precocious puberty in C57BL/6J mouse pups: a novel model of obesity and puberty[J]. Front. Med., 2017, 11(2): 266-276.
[9] Zhen He,Cheng Hu,Weiping Jia. miRNAs in non-alcoholic fatty liver disease[J]. Front. Med., 2016, 10(4): 389-396.
[10] Lixia Gan,Wei Xiang,Bin Xie,Liqing Yu. Molecular mechanisms of fatty liver in obesity[J]. Front. Med., 2015, 9(3): 275-287.
[11] Jianping Ye. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes[J]. Front. Med., 2015, 9(2): 139-145.
[12] Tao Wang,Weiping Jia,Cheng Hu. Advancement in genetic variants conferring obesity susceptibility from genome-wide association studies[J]. Front. Med., 2015, 9(2): 146-161.
[13] Shuwen Qian,Haiyan Huang,Qiqun Tang. Brown and beige fat: the metabolic function, induction, and therapeutic potential[J]. Front. Med., 2015, 9(2): 162-172.
[14] Jichun Yang, Jihong Kang, Youfei Guan. The mechanisms linking adiposopathy to type 2 diabetes[J]. Front Med, 2013, 7(4): 433-444.
[15] Yingjiang Zhou, Liangyou Rui. Leptin signaling and leptin resistance[J]. Front Med, 2013, 7(2): 207-222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed