Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2013, Vol. 7 Issue (4) : 433-444    https://doi.org/10.1007/s11684-013-0288-9
REVIEW
The mechanisms linking adiposopathy to type 2 diabetes
Jichun Yang, Jihong Kang, Youfei Guan()
Department of Physiology and Pathophysiology, Peking University Diabetes Center, Peking University Health Science Center, Beijing 100191, China
 Download: PDF(223 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Obesity is defined as excessive accumulation of body fat in proportion to body size. When obesity occurs, the functions of adipose tissue may be deregulated, which is termed as adiposopathy. Adiposopathy is an independent risk factor for many diseases, including diabetes and cardiovascular diseases. In overweight or obese subjects with adiposopathy, hyperlipidemia exerts lipotoxicity in pancreatic islet and liver and induces pancreatic β cell dysfunction and liver insulin resistance, which are the decisive factors causing type 2 diabetes. Moreover, adipokines have been shown to play important roles in the regulation of glucose homeostasis. When adiposopathy occurs, abnormal changes in the serum adipokine profile correlate with the development and progression of pancreatic β cell dysfunction and insulin resistance in peripheral tissue. The current paper briefly discusses the latest findings regarding the effects of adiposopathy-related lipotoxicity and cytokine toxicity on the development of type 2 diabetes.

Keywords obesity      adiposopathy      lipotoxicity      adipokines      diabetes     
Corresponding Author(s): Guan Youfei,Email:youfeiguan@bjmu.edu.cn   
Issue Date: 05 December 2013
 Cite this article:   
Jichun Yang,Jihong Kang,Youfei Guan. The mechanisms linking adiposopathy to type 2 diabetes[J]. Front Med, 2013, 7(4): 433-444.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-013-0288-9
https://academic.hep.com.cn/fmd/EN/Y2013/V7/I4/433
Fig.1  The mechanism(s) linking adiposopathy to type 2 diabetes. In overweight or obese individuals with adiposopathy, lipotoxicity and cytokine toxicity impair insulin secretion in pancreatic β cells and induce global and liver insulin resistance. A disturbed serum adipokine profile is characterized by decreased serum insulin-sensitizing adipokines concomitant with increased insulin-desensitizing adipokines; lipotoxicity, the deleterious effects of lipids on cells; and cytokine toxicity, the deleterious effects of cytokines on cells. FFAs, free fatty acids.
AdipokineEffects on insulin secretionEffects on insulin sensitivityCrossregulation among adipokines, FFAs and insulin
IL-1βInhibit insulin secretion and promote pancreatic β apoptosis [44-49]Induce insulin resistance in the liver [77-81]FFAs regulate its expression in the liver [24].
LeptinInhibit insulin secretion of pancreatic β cells at high levels [50,51,53]At physiological levels enhance insulin signaling [84-85], at high levels induce insulin resistance in the liver [86-89].Upregulated by insulin and FFAs in adipose tissue [121]
ResistinInhibit insulin secretion and induce apoptosis of pancreatic β cells [59-61]Induce insulin resistance in the liver [57,93-97]FFAs regulate its expression in adipose tissue and liver [24,121].
AdiponectinProtect against insulin secretion dysfunction induced by FFAs and hyperglycemia [67,68,70]Improve insulin sensitivity in the liver [101,102,104-106]Upregulated by chemerin in adipocytes [124]
VisfatinHave protective effects on pancreatic β cell function [72,74,75]Might be an insulin-sensitizing adipokine [111-113,125]Upregulated by glucose and FFAs in β cells and liver cells [126,127]
ChemerinRegulate pancreatic β cell function [76]Might be a new insulin-desensitizing adipokine [116-119]Upregulated by TNF-α in adipose [128]
Tab.1  Summary of the effects of adipokines on insulin secretion and insulin action
1 Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J; the China National Diabetes and Metabolic Disorders Study Group. Prevalence of diabetes among men and women in China. N Engl J Med 2010; 362(12): 1090–1101
doi: 10.1056/NEJMoa0908292 pmid:20335585
2 Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care 1994; 17(9): 961–969
doi: 10.2337/diacare.17.9.961 pmid:7988316
3 Bays H, Blonde L, Rosenson R. Adiposopathy: how do diet, exercise and weight loss drug therapies improve metabolic disease in overweight patients? Expert Rev Cardiovasc Ther 2006; 4(6): 871–895
doi: 10.1586/14779072.4.6.871 pmid:17173503
4 Bays HE. Adiposopathy, diabetes mellitus, and primary prevention of atherosclerotic coronary artery disease: treating “sick fat” through improving fat function with antidiabetes therapies. Am J Cardiol 2012; 110(9 Suppl): 4B–12B
doi: 10.1016/j.amjcard.2012.08.029 pmid:23062567
5 Dixon JB, O’Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S, Proietto J, Bailey M, Anderson M. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 2008; 299(3): 316–323
doi: 10.1001/jama.299.3.316 pmid:18212316
6 Wilkinson P, French R, Kane R, Lachowycz K, Stephenson J, Grundy C, Jacklin P, Kingori P, Stevens M, Wellings K. Teenage conceptions, abortions, and births in England, 1994-2003, and the national teenage pregnancy strategy. Lancet 2006; 368(9550): 1879–1886
doi: 10.1016/S0140-6736(06)69777-8 pmid:17126720
7 Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 2010; 375(9733): 2267–2277
doi: 10.1016/S0140-6736(10)60408-4 pmid:20609972
8 Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes 2011; 18(2): 139–143
doi: 10.1097/MED.0b013e3283444b09 pmid:21297467
9 Lois K, Kumar S. Obesity and diabetes. Endocrinol Nutr 2009; 56(Suppl 4): 38–42
doi: 10.1016/S1575-0922(09)73516-8 pmid:20629230
10 Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372(6505): 425–432
doi: 10.1038/372425a0 pmid:7984236
11 Zhuang XF, Zhao MM, Weng CL, Sun NL. Adipocytokines: a bridge connecting obesity and insulin resistance. Med Hypotheses 2009; 73(6): 981–985
doi: 10.1016/j.mehy.2009.05.036 pmid:19692185
12 Matsuzawa Y. Adiponectin: a key player in obesity related disorders. Curr Pharm Des 2010; 16(17): 1896–1901
doi: 10.2174/138161210791208893 pmid:20370675
13 Miyazaki Y, DeFronzo RA. Rosiglitazone and pioglitazone similarly improve insulin sensitivity and secretion, glucose tolerance and adipocytokines in type 2 diabetic patients. Diabetes Obes Metab 2008; 10(12): 1204–1211
pmid:18476983
14 Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Mandarino L, DeFronzo R, Cusi K. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes 2003; 52(10): 2461–2474
doi: 10.2337/diabetes.52.10.2461 pmid:14514628
15 Alquier T, Peyot ML, Latour MG, Kebede M, Sorensen CM, Gesta S, Ronald Kahn C, Smith RD, Jetton TL, Metz TO, Prentki M, Poitout V. Deletion of GPR40 impairs glucose-induced insulin secretion in vivo in mice without affecting intracellular fuel metabolism in islets. Diabetes 2009; 58(11): 2607–2615
doi: 10.2337/db09-0362 pmid:19720802
16 Kim JK, Fillmore JJ, Chen Y, Yu C, Moore IK, Pypaert M, Lutz EP, Kako Y, Velez-Carrasco W, Goldberg IJ, Breslow JL, Shulman GI. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci USA 2001; 98(13): 7522–7527
doi: 10.1073/pnas.121164498 pmid:11390966
17 Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996; 97(12): 2859–2865
doi: 10.1172/JCI118742 pmid:8675698
18 Storgaard H, Jensen CB, Vaag AA, V?lund A, Madsbad S. Insulin secretion after short- and long-term low-grade free fatty acid infusion in men with increased risk of developing type 2 diabetes. Metabolism 2003; 52(7): 885–894
doi: 10.1016/S0026-0495(03)00102-1 pmid:12870166
19 Boden G, Homko C, Mozzoli M, Showe LC, Nichols C, Cheung P. Thiazolidinediones upregulate fatty acid uptake and oxidation in adipose tissue of diabetic patients. Diabetes 2005; 54(3): 880–885
doi: 10.2337/diabetes.54.3.880 pmid:15734868
20 Shimabukuro M, Zhou YT, Lee Y, Unger RH. Troglitazone lowers islet fat and restores β cell function of Zucker diabetic fatty rats. J Biol Chem 1998; 273(6): 3547–3550
doi: 10.1074/jbc.273.6.3547 pmid:9452481
21 Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GI. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002; 277(52): 50230–50236
doi: 10.1074/jbc.M200958200 pmid:12006582
22 Turban S, Hajduch E. Protein kinase C isoforms: mediators of reactive lipid metabolites in the development of insulin resistance. FEBS Lett 2011; 585(2): 269–274
doi: 10.1016/j.febslet.2010.12.022 pmid:21176778
23 Nowotny B, Zahiragic L, Krog D, Nowotny PJ, Herder C, Carstensen M, Yoshimura T, Szendroedi J, Phielix E, Schadewaldt P, Schloot NC, Shulman GI, Roden M. Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans. Diabetes 2013; 62(7): 2240–2248
doi: 10.2337/db12-1179 pmid:23454694
24 Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, Xiang X, Luo Z, Ruderman N. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kB pathway in rat liver. Diabetes 2005; 54(12): 3458–3465
doi: 10.2337/diabetes.54.12.3458 pmid:16306362
25 Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-kB. Nat Med 2005; 11(2): 183–190
doi: 10.1038/nm1166 pmid:15685173
26 Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M. IKK-β links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11(2): 191–198
doi: 10.1038/nm1185 pmid:15685170
27 Hirosumi J, Tuncman G, Chang L, G?rgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature 2002; 420(6913): 333–336
doi: 10.1038/nature01137 pmid:12447443
28 Lebrun P, Van Obberghen E. SOCS proteins causing trouble in insulin action. Acta Physiol (Oxf) 2008; 192(1): 29–36
doi: 10.1111/j.1748-1716.2007.01782.x pmid:18171427
29 Reyna SM, Ghosh S, Tantiwong P, Meka CS, Eagan P, Jenkinson CP, Cersosimo E, Defronzo RA, Coletta DK, Sriwijitkamol A, Musi N. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes 2008; 57(10): 2595–2602
doi: 10.2337/db08-0038 pmid:18633101
30 Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004; 114(12): 1752–1761
pmid:15599400
31 Jiao P, Ma J, Feng B, Zhang H, Diehl JA, Chin YE, Yan W, Xu H. FFA-induced adipocyte inflammation and insulin resistance: involvement of ER stress and IKKβ pathways. Obesity (Silver Spring) 2011; 19(3): 483–491
doi: 10.1038/oby.2010.200 pmid:20829802
32 Nakamura S, Takamura T, Matsuzawa-Nagata N, Takayama H, Misu H, Noda H, Nabemoto S, Kurita S, Ota T, Ando H, Miyamoto K, Kaneko S. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem 2009; 284(22): 14809–14818
doi: 10.1074/jbc.M901488200 pmid:19332540
33 Yang C, Aye CC, Li X, Diaz Ramos A, Zorzano A, Mora S. Mitochondrial dysfunction in insulin resistance: differential contributions of chronic insulin and saturated fatty acid exposure in muscle cells. Biosci Rep 2012; 32(5): 465–478
doi: 10.1042/BSR20120034 pmid:22742515
34 Barazzoni R, Zanetti M, Gortan Cappellari G, Semolic A, Boschelle M, Codarin E, Pirulli A, Cattin L, Guarnieri G. Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-κB inhibitor (IκB)-nuclear factor-κB (NFκB) activation in rat muscle, in the absence of mitochondrial dysfunction. Diabetologia 2012; 55(3): 773–782
doi: 10.1007/s00125-011-2396-x pmid:22159911
35 Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M. Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 2003; 422(6928): 173–176
doi: 10.1038/nature01478 pmid:12629551
36 Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab 2005; 1(4): 245–258
doi: 10.1016/j.cmet.2005.03.007 pmid:16054069
37 Shimabukuro M, Zhou YT, Levi M, Unger RH. Fatty acid-induced β cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA 1998; 95(5): 2498–2502
doi: 10.1073/pnas.95.5.2498 pmid:9482914
38 Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science 1993; 259(5102): 1769–1771
doi: 8456305" target="_blank">10.1126/science. pmid:8456305 pmid:8456305
39 Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ. Endoplasmic reticulum stress contributes to β cell apoptosis in type 2 diabetes. Diabetologia 2007; 50(4): 752–763
doi: 10.1007/s00125-006-0590-z pmid:17268797
40 Huang CJ, Lin CY, Haataja L, Gurlo T, Butler AE, Rizza RA, Butler PC. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 2007; 56(8): 2016–2027
doi: 10.2337/db07-0197 pmid:17475933
41 Kharroubi I, Ladrière L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL. Free fatty acids and cytokines induce pancreatic β-cell apoptosis by different mechanisms: role of nuclear factor-kB and endoplasmic reticulum stress. Endocrinology 2004; 145(11): 5087–5096
doi: 10.1210/en.2004-0478 pmid:15297438
42 Yuan H, Zhang X, Huang X, Lu Y, Tang W, Man Y, Wang S, Xi J, Li J. NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of β-cells via JNK, p38 MAPK and p53 pathways. PLoS ONE 2010; 5(12): e15726
doi: 10.1371/journal.pone.0015726 pmid:21209957
43 Martinez SC, Tanabe K, Cras-Méneur C, Abumrad NA, Bernal-Mizrachi E, Permutt MA. Inhibition of Foxo1 protects pancreatic islet β-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes 2008; 57(4): 846–859
doi: 10.2337/db07-0595 pmid:18174526
44 Misaki Y, Miyauchi R, Mochizuki K, Takabe S, Shimada M, Ichikawa Y, Goda T. Plasma interleukin-1β concentrations are closely associated with fasting blood glucose levels in healthy and preclinical middle-aged nonoverweight and overweight Japanese men. Metabolism 2010; 59(10): 1465–1471
doi: 10.1016/j.metabol.2010.01.011 pmid:20170929
45 Wang C, Guan Y, Yang J. Cytokines in the progression of pancreatic β-cell dysfunction. Int J Endocrinol 2010; 2010: 515136
doi: 10.1155/2010/515136 pmid:21113299
46 Giannoukakis N, Rudert WA, Ghivizzani SC, Gambotto A, Ricordi C, Trucco M, Robbins PD. Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1β-induced β-cell impairment and activation of islet cell apoptosis in vitro. Diabetes 1999; 48(9): 1730–1736
doi: 10.2337/diabetes.48.9.1730 pmid:10480601
47 Papaccio G, Graziano A, D’Aquino R, Valiante S, Naro F. A biphasic role of nuclear transcription factor (NF)-kB in the islet β-cell apoptosis induced by interleukin (IL)-1β. J Cell Physiol 2005; 204(1): 124–130
doi: 10.1002/jcp.20276 pmid:15622524
48 Osborn O, Brownell SE, Sanchez-Alavez M, Salomon D, Gram H, Bartfai T. Treatment with an interleukin 1 β antibody improves glycemic control in diet-induced obesity. Cytokine 2008; 44(1): 141–148
doi: 10.1016/j.cyto.2008.07.004 pmid:18723371
49 Larsen CM, Faulenbach M, Vaag A, V?lund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 2007; 356(15): 1517–1526
doi: 10.1056/NEJMoa065213 pmid:17429083
50 Kieffer TJ, Heller RS, Habener JF. Leptin receptors expressed on pancreatic β-cells. Biochem Biophys Res Commun 1996; 224(2): 522–527
doi: 10.1006/bbrc.1996.1059 pmid:8702421
51 Harvey J, McKenna F, Herson PS, Spanswick D, Ashford ML. Leptin activates ATP-sensitive potassium channels in the rat insulin-secreting cell line, CRI-G1. J Physiol 1997; 504(Pt 3): 527–535
doi: 10.1111/j.1469-7793.1997.527bd.x pmid:9401961
52 Zhao AZ, Bornfeldt KE, Beavo JA. Leptin inhibits insulin secretion by activation of phosphodiesterase 3B. J Clin Invest 1998; 102(5): 869–873
doi: 10.1172/JCI3920 pmid:9727054
53 Laubner K, Kieffer TJ, Lam NT, Niu X, Jakob F, Seufert J. Inhibition of preproinsulin gene expression by leptin induction of suppressor of cytokine signaling 3 in pancreatic β-cells. Diabetes 2005; 54(12): 3410–3417
doi: 10.2337/diabetes.54.12.3410 pmid:16306356
54 Morioka T, Asilmaz E, Hu J, Dishinger JF, Kurpad AJ, Elias CF, Li H, Elmquist JK, Kennedy RT, Kulkarni RN. Disruption of leptin receptor expression in the pancreas directly affects β cell growth and function in mice. J Clin Invest 2007; 117(10): 2860–2868
doi: 10.1172/JCI30910 pmid:17909627
55 Huypens PR. Leptin and adiponectin regulate compensatory β cell growth in accordance to overweight. Med Hypotheses 2007; 68(5): 1134–1137
doi: 10.1016/j.mehy.2006.09.046 pmid:17098372
56 Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006; 7(2): 85–96
doi: 10.1038/nrm1837 pmid:16493415
57 Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. The hormone resistin links obesity to diabetes. Nature 2001; 409(6818): 307–312
doi: 10.1038/35053000 pmid:11201732
58 Minn AH, Patterson NB, Pack S, Hoffmann SC, Gavrilova O, Vinson C, Harlan DM, Shalev A. Resistin is expressed in pancreatic islets. Biochem Biophys Res Commun 2003; 310(2): 641–645
doi: 10.1016/j.bbrc.2003.09.061 pmid:14521959
59 Brown JE, Onyango DJ, Dunmore SJ. Resistin down-regulates insulin receptor expression, and modulates cell viability in rodent pancreatic β-cells. FEBS Lett 2007; 581(17): 3273–3276
doi: 10.1016/j.febslet.2007.06.031 pmid:17597619
60 Gao CL, Zhao DY, Qiu J, Zhang CM, Ji CB, Chen XH, Liu F, Guo XR. Resistin induces rat insulinoma cell RINm5F apoptosis. Mol Biol Rep 2009; 36(7): 1703–1708
pmid:18839335
61 Nakata M, Okada T, Ozawa K, Yada T. Resistin induces insulin resistance in pancreatic islets to impair glucose-induced insulin release. Biochem Biophys Res Commun 2007; 353(4): 1046–1051
doi: 10.1016/j.bbrc.2006.12.134 pmid:17207771
62 Yang J, Zhang D, Li J, Zhang X, Fan F, Guan Y. Role of PPARg in renoprotection in type 2 diabetes: molecular mechanisms and therapeutic potential. Clin Sci (Lond) 2009; 116(1): 17–26
doi: 10.1042/CS20070462 pmid:19037881
63 Kriketos AD, Gan SK, Poynten AM, Furler SM, Chisholm DJ, Campbell LV. Exercise increases adiponectin levels and insulin sensitivity in humans. Diabetes Care 2004; 27(2): 629–630
doi: 10.2337/diacare.27.2.629 pmid:14747265
64 Winzer C, Wagner O, Festa A, Schneider B, Roden M, Bancher-Todesca D, Pacini G, Funahashi T, Kautzky-Willer A. Plasma adiponectin, insulin sensitivity, and subclinical inflammation in women with prior gestational diabetes mellitus. Diabetes Care 2004; 27(7): 1721–1727
doi: 10.2337/diacare.27.7.1721 pmid:15220253
65 Kharroubi I, Rasschaert J, Eizirik DL, Cnop M. Expression of adiponectin receptors in pancreatic β cells. Biochem Biophys Res Commun 2003; 312(4): 1118–1122
doi: 10.1016/j.bbrc.2003.11.042 pmid:14651988
66 Liu Y, Michael MD, Kash S, Bensch WR, Monia BP, Murray SF, Otto KA, Syed SK, Bhanot S, Sloop KW, Sullivan JM, Reifel-Miller A. Deficiency of adiponectin receptor 2 reduces diet-induced insulin resistance but promotes type 2 diabetes. Endocrinology 2007; 148(2): 683–692
doi: 10.1210/en.2006-0708 pmid:17068142
67 Jung TW, Lee MW, Lee YJ, Kim SM, Lee KT, Whang WK, Cheon HJ, Jeong YT, Chung KW, Cho JM, Kim H, Jung TW. Regulation of adiponectin receptor 2 expression via PPAR-α in NIT-1 cells. Endocr J 2009; 56(3): 377–382
doi: 10.1507/endocrj.K08E-354 pmid:19336949
68 Rakatzi I, Mueller H, Ritzeler O, Tennagels N, Eckel J. Adiponectin counteracts cytokine- and fatty acid-induced apoptosis in the pancreatic β-cell line INS-1. Diabetologia 2004; 47(2): 249–258
doi: 10.1007/s00125-003-1293-3 pmid:14722646
69 Lin P, Chen L, Li D, Liu J, Yang N, Sun Y, Xu Y, Fu Y, Hou X. Adiponectin reduces glucotoxicity-induced apoptosis of INS-1 rat insulin-secreting cells on a microfluidic chip. Tohoku J Exp Med 2009; 217(1): 59–65
doi: 10.1620/tjem.217.59 pmid:19155609
70 Brown JE, Conner AC, Digby JE, Ward KL, Ramanjaneya M, Randeva HS, Dunmore SJ. Regulation of β-cell viability and gene expression by distinct agonist fragments of adiponectin. Peptides 2010; 31(5): 944–949
doi: 10.1016/j.peptides.2010.02.004 pmid:20156502
71 Staiger K, Stefan N, Staiger H, Brendel MD, Brandhorst D, Bretzel RG, Machicao F, Kellerer M, Stumvoll M, Fritsche A, H?ring HU. Adiponectin is functionally active in human islets but does not affect insulin secretory function or β-cell lipoapoptosis. J Clin Endocrinol Metab 2005; 90(12): 6707–6713
doi: 10.1210/jc.2005-0467 pmid:16204361
72 Revollo JR, K?rner A, Mills KF, Satoh A, Wang T, Garten A, Dasgupta B, Sasaki Y, Wolberger C, Townsend RR, Milbrandt J, Kiess W, Imai S. Nampt/PBEF/Visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metab 2007; 6(5): 363–375
doi: 10.1016/j.cmet.2007.09.003 pmid:17983582
73 Brown JE, Onyango DJ, Ramanjaneya M, Conner AC, Patel ST, Dunmore SJ, Randeva HS. Visfatin regulates insulin secretion, insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic β-cells. J Mol Endocrinol 2010; 44(3): 171–178
doi: 10.1677/JME-09-0071 pmid:19906834
74 Spinnler R, Gorski T, Stolz K, Schuster S, Garten A, Beck-Sickinger AG, Engelse MA, de Koning EJ, K?rner A, Kiess W, Maedler K. The adipocytokine Nampt and its product NMN have no effect on β-cell survival but potentiate glucose stimulated insulin secretion. PLoS ONE 2013; 8(1): e54106
doi: 10.1371/journal.pone.0054106 pmid:23342086
75 Cheng Q, Dong W, Qian L, Wu J, Peng Y. Visfatin inhibits apoptosis of pancreatic β-cell line, MIN6, via the mitogen-activated protein kinase/phosphoinositide 3-kinase pathway. J Mol Endocrinol 2011; 47(1): 13–21
doi: 10.1530/JME-10-0106 pmid:21471274
76 Takahashi M, Okimura Y, Iguchi G, Nishizawa H, Yamamoto M, Suda K, Kitazawa R, Fujimoto W, Takahashi K, Zolotaryov FN, Hong KS, Kiyonari H, Abe T, Kaji H, Kitazawa S, Kasuga M, Chihara K, Takahashi Y. Chemerin regulates β-cell function in mice. Sci Rep 2011;1:123
doi: 10.1038/srep00123 pmid:22355640
77 Borst SE, Conover CF. High-fat diet induces increased tissue expression of TNF-α. Life Sci 2005; 77(17): 2156–2165
doi: 10.1016/j.lfs.2005.03.021 pmid:15935403
78 Aygun AD, Gungor S, Ustundag B, Gurgoze MK, Sen Y. Proinflammatory cytokines and leptin are increased in serum of prepubertal obese children. Mediators Inflamm 2005; 2005(3): 180–183
pmid:16106106
79 Ehses JA, Lacraz G, Giroix MH, Schmidlin F, Coulaud J, Kassis N, Irminger JC, Kergoat M, Portha B, Homo-Delarche F, Donath MY. IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci USA 2009; 106(33): 13998–14003
doi: 10.1073/pnas.0810087106 pmid:19666548
80 Nov O, Kohl A, Lewis EC, Bashan N, Dvir I, Ben-Shlomo S, Fishman S, Wueest S, Konrad D, Rudich A. Interleukin-1β may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation. Endocrinology 2010; 151(9): 4247–4256
doi: 10.1210/en.2010-0340 pmid:20660063
81 Boisclair YR, Wang J, Shi J, Hurst KR, Ooi GT. Role of the suppressor of cytokine signaling-3 in mediating the inhibitory effects of interleukin-1β on the growth hormone-dependent transcription of the acid-labile subunit gene in liver cells. J Biol Chem 2000; 275(6): 3841–3847
doi: 10.1074/jbc.275.6.3841 pmid:10660535
82 Ling PR, Bistrian BR, Mendez B, Istfan NW. Effects of systemic infusions of endotoxin, tumor necrosis factor, and interleukin-1 on glucose metabolism in the rat: relationship to endogenous glucose production and peripheral tissue glucose uptake. Metabolism 1994; 43(3): 279–284
doi: 10.1016/0026-0495(94)90093-0 pmid:8139474
83 Szanto I, Kahn CR. Selective interaction between leptin and insulin signaling pathways in a hepatic cell line. Proc Natl Acad Sci USA 2000; 97(5): 2355–2360
doi: 10.1073/pnas.050580497 pmid:10688912
84 Himeno K, Seike M, Fukuchi S, Masaki T, Kakuma T, Sakata T, Yoshimatsu H. Heterozygosity for leptin receptor (fa) accelerates hepatic triglyceride accumulation without hyperphagia in Zucker rats. Obes Res Clin Pract 2009; 3(1): 29–34
doi: 10.1016/j.orcp.2008.10.003
85 Leonardo ES, Bassoli BK, Cassolla P, Borba-Murad GR, Bazotte RB, De Souza HM. Leptin inhibits glycogen catabolism but does not modify acutely the suppressive effect of insulin on glucose production and glycogenolysis stimulated by 8-Br-cAMP in rat liver perfused in situ. Pharmacol Res 2009; 59(3): 176–182
doi: 10.1016/j.phrs.2008.12.002 pmid:19121393
86 Huang W, Dedousis N, Bhatt BA, O’Doherty RM. Impaired activation of phosphatidylinositol 3-kinase by leptin is a novel mechanism of hepatic leptin resistance in diet-induced obesity. J Biol Chem 2004; 279(21): 21695–21700
doi: 10.1074/jbc.M401546200 pmid:14993225
87 Benomar Y, Wetzler S, Larue-Achagiotis C, Djiane J, Tomé D, Taouis M. In vivo leptin infusion impairs insulin and leptin signalling in liver and hypothalamus. Mol Cell Endocrinol 2005; 242(1–2): 59–66
doi: 10.1016/j.mce.2005.07.003 pmid:16150536
88 Vilà L, Roglans N, Alegret M, Sánchez RM, Vázquez-Carrera M, Laguna JC. Suppressor of cytokine signaling-3 (SOCS-3) and a deficit of serine/threonine (Ser/Thr) phosphoproteins involved in leptin transduction mediate the effect of fructose on rat liver lipid metabolism. Hepatology 2008; 48(5): 1506–1516
doi: 10.1002/hep.22523 pmid:18924245
89 Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 2010; 299(5): E685–E694
doi: 10.1152/ajpendo.00283.2010 pmid:20823452
90 Hennige AM, Stefan N, Kapp K, Lehmann R, Weigert C, Beck A, Moeschel K, Mushack J, Schleicher E, H?ring HU. Leptin down-regulates insulin action through phosphorylation of serine-318 in insulin receptor substrate 1. FASEB J 2006; 20(8): 1206–1208
doi: 10.1096/fj.05-4635fje pmid:16611834
91 Eguchi M, Gillis LC, Liu Y, Lyakho vs ky N, Du M, McDermott JC, Sweeney G. Regulation of SOCS-3 expression by leptin and its co-localization with insulin receptor in rat skeletal muscle cells. Mol Cell Endocrinol 2007; 267(1–2): 38–45
doi: 10.1016/j.mce.2006.11.009 pmid:17223256
92 Liu F, Yang T, Wang B, Zhang M, Gu N, Qiu J, Fan HQ, Zhang CM, Fei L, Pan XQ, Guo M, Chen RH, Guo XR. Resistin induces insulin resistance, but does not affect glucose output in rat-derived hepatocytes. Acta Pharmacol Sin 2008; 29(1): 98–104
doi: 10.1111/j.1745-7254.2008.00709.x pmid:18158871
93 Yang Y, Xiao M, Mao Y, Li H, Zhao S, Gu Y, Wang R, Yu J, Zhang X, Irwin DM, Niu G, Tan H. Resistin and insulin resistance in hepatocytes: resistin disturbs glycogen metabolism at the protein level. Biomed Pharmacother 2009; 63(5): 366–374
doi: 10.1016/j.biopha.2008.06.033 pmid:18672341
94 Luo Z, Zhang Y, Li F, He J, Ding H, Yan L, Cheng H. Resistin induces insulin resistance by both AMPK-dependent and AMPK-independent mechanisms in HepG2 cells. Endocrine 2009; 36(1): 60–69
doi: 10.1007/s12020-009-9198-7 pmid:19440859
95 Steppan CM, Wang J, Whiteman EL, Birnbaum MJ, Lazar MA. Activation of SOCS-3 by resistin. Mol Cell Biol 2005; 25(4): 1569–1575
doi: 10.1128/MCB.25.4.1569-1575.2005 pmid:15684405
96 Sheng CH, Di J, Jin Y, Zhang YC, Wu M, Sun Y, Zhang GZ. Resistin is expressed in human hepatocytes and induces insulin resistance. Endocrine 2008; 33(2): 135–143
doi: 10.1007/s12020-008-9065-y pmid:18446452
97 Szalowska E, Elferink MG, Hoek A, Groothuis GM, Vonk RJ. Resistin is more abundant in liver than adipose tissue and is not up-regulated by lipopolysaccharide. J Clin Endocrinol Metab 2009; 94(8): 3051–3057
doi: 10.1210/jc.2008-2787 pmid:19454585
98 Li FP, Li ZZ, Zhang M, Yan L, Fu ZZ. Effects of resistin on skeletal glucose metabolism. Front Med China 2010; 4(3): 329–335
doi: 10.1007/s11684-010-0091-9 pmid:21191840
99 Palanivel R, Maida A, Liu Y, Sweeney G. Regulation of insulin signalling, glucose uptake and metabolism in rat skeletal muscle cells upon prolonged exposure to resistin. Diabetologia 2006; 49(1): 183–190
doi: 10.1007/s00125-005-0060-z pmid:16341686
100 Kaser S, Moschen A, Cayon A, Kaser A, Crespo J, Pons-Romero F, Ebenbichler CF, Patsch JR, Tilg H. Adiponectin and its receptors in non-alcoholic steatohepatitis. Gut 2005; 54(1): 117–121
doi: 10.1136/gut.2003.037010 pmid:15591515
101 Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME, Pang Z, Chen AS, Ruderman NB, Chen H, Rossetti L, Scherer PE. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor g agonists. J Biol Chem 2006; 281(5): 2654–2660
doi: 10.1074/jbc.M505311200 pmid:16326714
102 Nan MH, Park JS, Myung CS. Construction of adiponectin-encoding plasmid DNA and gene therapy of non-obese type 2 diabetes mellitus. J Drug Target 2010; 18(1): 67–77
doi: 10.3109/10611860903225719 pmid:19708766
103 Shen Z, Liang X, Rogers CQ, Rideout D, You M. Involvement of adiponectin-SIRT1-AMPK signaling in the protective action of rosiglitazone against alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 2010; 298(3): G364–G374
doi: 10.2337/diabetes.52.9.2296 pmid:12941769
104 Asano T, Watanabe K, Kubota N, Gunji T, Omata M, Kadowaki T, Ohnishi S. Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis. J Gastroenterol Hepatol 2009; 24(10): 1669–1676
doi: 10.1111/j.1440-1746.2009.06039.x pmid:19788607
105 Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8(11): 1288–1295
doi: 10.1038/nm788 pmid:12368907
106 Lin E, Phillips LS, Ziegler TR, Schmotzer B, Wu K, Gu LH, Khaitan L, Lynch SA, Torres WE, Smith CD, Gletsu-Miller N. Increases in adiponectin predict improved liver, but not peripheral, insulin sensitivity in severely obese women during weight loss. Diabetes 2007; 56(3): 735–742
doi: 10.2337/db06-1161 pmid:17327444
107 Sun X, Han R, Wang Z, Chen Y. Regulation of adiponectin receptors in hepatocytes by the peroxisome proliferator-activated receptor-g agonist rosiglitazone. Diabetologia 2006; 49(6): 1303–1310
doi: 10.1007/s00125-006-0228-1 pmid:16609881
108 Sattar AA, Sattar R. Insulin-regulated expression of adiponectin receptors in muscle and fat cells. Cell Biol Int 2012; 36(12): 1293–1297
doi: 10.1042/CBI20120294 pmid:23043361
109 Choudhary S, Sinha S, Zhao Y, Banerjee S, Sathyanarayana P, Shahani S, Sherman V, Tilton RG, Bajaj M. NF-κB-inducing kinase (NIK) mediates skeletal muscle insulin resistance: blockade by adiponectin. Endocrinology 2011; 152(10): 3622–3627
doi: 10.1210/en.2011-1343 pmid:21846802
110 Vu V, Bui P, Eguchi M, Xu A, Sweeney G. Globular adiponectin induces LKB1/AMPK-dependent glucose uptake via actin cytoskeleton remodeling. J Mol Endocrinol 2013; 51(1): 155–165
doi: 10.1530/JME-13-0059 pmid:23709749
111 Gaddipati R, Sasikala M, Padaki N, Mukherjee RM, Sekaran A, Jayaraj-Mansard M, Rabella P, Rao-Guduru V, Reddy-Duvvuru N. Visceral adipose tissue visfatin in nonalcoholic fatty liver disease. Ann Hepatol 2010; 9(3): 266–270
pmid:20720266
112 Skop V, Kontrová K, Zídek V, Pravenec M, Kazdová L, Mikulík K, Sajdok J, Zídková J. Autocrine effects of visfatin on hepatocyte sensitivity to insulin action. Physiol Res 2010; 59(4): 615–618
pmid:19929131
113 Sun Q, Li L, Li R, Yang M, Liu H, Nowicki MJ, Zong H, Xu J, Yang G. Overexpression of visfatin/PBEF/Nampt alters whole-body insulin sensitivity and lipid profile in rats. Ann Med 2009; 41(4): 311–320
doi: 10.1080/07853890902729760 pmid:19263259
114 Romanowska A, Lebensztejn DM. Evaluation of serum visfatin concentrations in children with nonalcoholic fatty liver disease. Pol Merkuriusz Lek 2010; 28: 459–461 (in Polish)
pmid:20642104
115 Costford SR, Bajpeyi S, Pasarica M, Albarado DC, Thomas SC, Xie H, Church TS, Jubrias SA, Conley KE, Smith SR. Skeletal muscle NAMPT is induced by exercise in humans. Am J Physiol Endocrinol Metab 2010; 298(1): E117–E126
doi: 10.1152/ajpendo.00318.2009 pmid:19887595
116 Sell H, Divoux A, Poitou C, Basdevant A, Bouillot JL, Bedossa P, Tordjman J, Eckel J, Clément K. Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J Clin Endocrinol Metab 2010; 95(6): 2892–2896
doi: 10.1210/jc.2009-2374 pmid:20375212
117 Ernst MC, Issa M, Goralski KB, Sinal CJ. Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes. Endocrinology 2010; 151(5): 1998–2007
doi: 10.1210/en.2009-1098 pmid:20228173
118 Ouwens DM, Bekaert M, Lapauw B, Van Nieuwenhove Y, Lehr S, Hartwig S, Calders P, Kaufman JM, Sell H, Eckel J, Ruige JB. Chemerin as biomarker for insulin sensitivity in males without typical characteristics of metabolic syndrome. Arch Physiol Biochem 2012; 118(3): 135–138
doi: 10.3109/13813455.2012.654800 pmid:22335466
119 Becker M, Rabe K, Lebherz C, Zugwurst J, G?ke B, Parhofer KG, Lehrke M, Broedl UC. Expression of human chemerin induces insulin resistance in the skeletal muscle but does not affect weight, lipid levels, and atherosclerosis in LDL receptor knockout mice on high-fat diet. Diabetes 2010; 59(11): 2898–2903
doi: 10.2337/db10-0362 pmid:20724582
120 Lau CH, Muniandy S. Novel adiponectin-resistin (AR) and insulin resistance (IRAR) indexes are useful integrated diagnostic biomarkers for insulin resistance, type 2 diabetes and metabolic syndrome: a case control study. Cardiovasc Diabetol 2011; 10(1): 8
doi: 10.1186/1475-2840-10-8 pmid:21251282
121 Pagano C, Dorigo A, Nisoli E, Tonello C, Calcagno A, Tami V, Granzotto M, Carruba MO, Federspil G, Vettor R. Role of insulin and free fatty acids in the regulation of ob gene expression and plasma leptin in normal rats. Obes Res 2004; 12(12): 2062– 2069
doi: 10.1038/oby.2004.257 pmid:15687408
122 Haugen F, Zahid N, Dalen KT, Hollung K, Nebb HI, Drevon CA. Resistin expression in 3T3-L1 adipocytes is reduced by arachidonic acid. J Lipid Res 2005; 46(1): 143–153
doi: 10.1194/jlr.M400348-JLR200 pmid:15489540
123 Gu N, Guo XR, Ni YH, Liu F, Fei L, Chen RH. Overexpression of resistin affect 3T3-L1 adipocyte lipid metabolism. Chin J Med Genet ( Zhonghua Yi Xue Yi Chuan Xue Za Zhi) 2007; 24(3): 251–255 (in Chinese)
pmid:17557231
124 Kukla M, Mazur W, Buldak RJ, Zwirska-Korczala K. Potential role of leptin, adiponectin and three novel adipokines—visfatin, chemerin and vaspin—in chronic hepatitis. Mol Med 2011; 17(11–12): 1397–1410
doi: 10.2119/molmed.2010.00105 pmid:21738955
125 López-Bermejo A, Chico-Julià B, Fernàndez-Balsells M, Recasens M, Esteve E, Casamitjana R, Ricart W, Fernández-Real JM. Serum visfatin increases with progressive β-cell deterioration. Diabetes 2006; 55(10): 2871–2875
doi: 10.2337/db06-0259 pmid:17003355
126 Choi YJ, Choi SE, Ha ES, Kang Y, Han SJ, Kim DJ, Lee KW, Kim HJ. Involvement of visfatin in palmitate-induced upregulation of inflammatory cytokines in hepatocytes. Metabolism 2011; 60(12): 1781–1789
doi: 10.1016/j.metabol.2011.05.003 pmid:21664630
127 Kover K, Tong PY, Watkins D, Clements M, Stehno-Bittel L, Novikova L, Bittel D, Kibiryeva N, Stuhlsatz J, Yan Y, Ye SQ, Moore WV. Expression and regulation of nampt in human islets. PLoS ONE 2013; 8(3): e58767
doi: 10.1371/journal.pone.0058767 pmid:23536823
128 Song SH, Fukui K, Nakajima K, Kozakai T, Sasaki S, Roh SG, Katoh K. Cloning, expression analysis, and regulatory mechanisms of bovine chemerin and chemerin receptor. Domest Anim Endocrinol 2010; 39(2): 97–105
doi: 10.1016/j.domaniend.2010.02.007 pmid:20399065
[1] Hui Wang, Yang Zhang, Zhujun Shen, Ligang Fang, Zhenyu Liu, Shuyang Zhang. Prognostic value of fasting glucose on the risk of heart failure and left ventricular systolic dysfunction in non-diabetic patients with ST-segment elevation myocardial infarction[J]. Front. Med., 2021, 15(1): 70-78.
[2] Di Cheng, Chunyan Hu, Rui Du, Hongyan Qi, Lin Lin, Xueyan Wu, Lina Ma, Kui Peng, Mian Li, Min Xu, Yu Xu, Yufang Bi, Weiqing Wang, Yuhong Chen, Jieli Lu. Serum uric acid and risk of incident diabetes in middle-aged and elderly Chinese adults: prospective cohort study[J]. Front. Med., 2020, 14(6): 802-810.
[3] Huiwen Ren, Can Wu, Ying Shao, Shuang Liu, Yang Zhou, Qiuyue Wang. Correlation between serum miR-154-5p and urinary albumin excretion rates in patients with type 2 diabetes mellitus: a cross-sectional cohort study[J]. Front. Med., 2020, 14(5): 642-650.
[4] Pengju Zhang, Tao Li, Xingyun Wu, Edouard C. Nice, Canhua Huang, Yuanyuan Zhang. Oxidative stress and diabetes: antioxidative strategies[J]. Front. Med., 2020, 14(5): 583-600.
[5] Ning Jiang, Yao Li, Ting Shu, Jing Wang. Cytokines and inflammation in adipogenesis: an updated review[J]. Front. Med., 2019, 13(3): 314-329.
[6] So Jung Yang, Hun-Sung Kim, Kun-Ho Yoon. Analyzing the distinguishing factors that affect childhood obesity in South Korea[J]. Front. Med., 2018, 12(6): 707-716.
[7] Xiaoqing Li, Xinxin Li, Genbei Wang, Yan Xu, Yuanyuan Wang, Ruijia Hao, Xiaohui Ma. Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice[J]. Front. Med., 2018, 12(6): 688-696.
[8] Liping Xuan, Zhiyun Zhao, Xu Jia, Yanan Hou, Tiange Wang, Mian Li, Jieli Lu, Yu Xu, Yuhong Chen, Lu Qi, Weiqing Wang, Yufang Bi, Min Xu. Type 2 diabetes is causally associated with depression: a Mendelian randomization analysis[J]. Front. Med., 2018, 12(6): 678-687.
[9] Eun Young Lee, Kun-Ho Yoon. Epidemic obesity in children and adolescents: risk factors and prevention[J]. Front. Med., 2018, 12(6): 658-666.
[10] Ruiting Han, Junli Ma, Houkai Li. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota[J]. Front. Med., 2018, 12(6): 645-657.
[11] Jiemin Pan, Weiping Jia. Early-onset diabetes: an epidemic in China[J]. Front. Med., 2018, 12(6): 624-633.
[12] Cynthia Rajani, Wei Jia. Bile acids and their effects on diabetes[J]. Front. Med., 2018, 12(6): 608-623.
[13] Tiange Wang, Min Xu, Yufang Bi, Guang Ning. Interplay between diet and genetic susceptibility in obesity and related traits[J]. Front. Med., 2018, 12(6): 601-607.
[14] Meng Dong, Jun Lin, Wonchung Lim, Wanzhu Jin, Hyuek Jong Lee. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia[J]. Front. Med., 2018, 12(2): 130-138.
[15] Chao Chen, Chang Wang, Chun Hu, Yachun Han, Li Zhao, Xuejing Zhu, Li Xiao, Lin Sun. Normoalbuminuric diabetic kidney disease[J]. Front. Med., 2017, 11(3): 310-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed