Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (2) : 130-138    https://doi.org/10.1007/s11684-017-0555-2
REVIEW
Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia
Meng Dong1,2, Jun Lin1,2, Wonchung Lim3, Wanzhu Jin1, Hyuek Jong Lee1,4()
1. Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2. The University of the Chinese Academy of Sciences, Beijing 100049, China
3. Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 363-764, Republic of Korea
4. Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
 Download: PDF(166 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Brown adipose tissue (BAT) plays a fundamental role in maintaining body temperature by producing heat. BAT that had been know to exist only in mammals and the human neonate has received great attention for the treatment of obesity and diabetes due to its important function in energy metabolism, ever since it is recently reported that human adults have functional BAT. In addition, beige adipocytes, brown adipocytes in white adipose tissue (WAT), have also been shown to take part in whole body metabolism. Multiple lines of evidence demonstrated that transplantation or activation of BAT or/and beige adipocytes reversed obesity and improved insulin sensitivity. Furthermore, many genes involved in BAT activation and/or the recruitment of beige cells have been found, thereby providing new promising strategies for future clinical application of BAT activation to treat obesity and metabolic diseases. This review focuses on recent advances of BAT function in the metabolic aspect and the relationship between BAT and cancer cachexia, a pathological process accompanied with decreased body weight and increased energy expenditure in cancer patients. The underlying possible mechanisms to reduce BAT mass and its activity in the elderly are also discussed.

Keywords brown adipose tissue      beige adipocyte      anti-obesity      anti-diabetes      cancer cachexia      aging     
Corresponding Author(s): Hyuek Jong Lee   
Just Accepted Date: 07 September 2017   Online First Date: 09 November 2017    Issue Date: 02 April 2018
 Cite this article:   
Meng Dong,Jun Lin,Wonchung Lim, et al. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia[J]. Front. Med., 2018, 12(2): 130-138.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0555-2
https://academic.hep.com.cn/fmd/EN/Y2018/V12/I2/130
1 Schulz TJ, Tseng YH. Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev 2009; 20(5-6): 523–531
https://doi.org/10.1016/j.cytogfr.2009.10.019 pmid: 19896888
2 Townsend KL, Tseng YH. Brown fat fuel utilization and thermogenesis. Trends Endocrinol Metab 2014; 25(4): 168–177
https://doi.org/10.1016/j.tem.2013.12.004 pmid: 24389130
3 Shen YY, Liu XM, Dong M, Lin J, Zhao QW, Lee H, Jin WZ. Recent advances in brown adipose tissue biology. Chin Sci Bull 2014; 59(31): 4030–4040
https://doi.org/10.1007/s11434-014-0386-3
4 Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360(15): 1509–1517
https://doi.org/10.1056/NEJMoa0810780 pmid: 19357406
5 van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360(15): 1500–1508
https://doi.org/10.1056/NEJMoa0808718 pmid: 19357405
6 Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerbäck S, Nuutila P. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360(15): 1518–1525
https://doi.org/10.1056/NEJMoa0808949 pmid: 19357407
7 Oelkrug R, Polymeropoulos ET, Jastroch M. Brown adipose tissue: physiological function and evolutionary significance. J Comp Physiol B 2015; 185(6): 587–606
https://doi.org/10.1007/s00360-015-0907-7 pmid: 25966796
8 Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84(1): 277–359
https://doi.org/10.1152/physrev.00015.2003 pmid: 14715917
9 Astrup A. Thermogenesis in human brown adipose tissue and skeletal muscle induced by sympathomimetic stimulation. Acta Endocrinol Suppl (Copenh) 1986; 278: 1–32
pmid: 3464154
10 Adamson SK Jr, Towell ME. Thermal homeostasis in the fetus and newborn. Anesthesiology 1965; 26(4): 531–548
https://doi.org/10.1097/00000542-196507000-00017 pmid: 14313463
11 Asakura H. Fetal and neonatal thermoregulation. J Nippon Med Sch 2004; 71(6): 360–370
https://doi.org/10.1272/jnms.71.360 pmid: 15673956
12 Symonds ME. Pregnancy, parturition and neonatal development: interactions between nutrition and thyroid hormones. Proc Nutr Soc 1995; 54(2): 329–343
https://doi.org/10.1079/PNS19950002 pmid: 8524880
13 Aherne W, Hull D. Brown adipose tissue and heat production in the newborn infant. J Pathol Bacteriol 1966; 91(1): 223–234
https://doi.org/10.1002/path.1700910126 pmid: 5941392
14 Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, Hamilton DL, Gimeno RE, Wahlestedt C, Baar K, Nedergaard J, Cannon B. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA 2007; 104(11): 4401–4406
https://doi.org/10.1073/pnas.0610615104 pmid: 17360536
15 Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scimè A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454(7207): 961–967
https://doi.org/10.1038/nature07182 pmid: 18719582
16 Lepper C, Fan CM. Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 2010; 48(7): 424–436
https://doi.org/10.1002/dvg.20630 pmid: 20641127
17 Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex. Nature 2009; 460(7259): 1154–1158
https://doi.org/10.1038/nature08262 pmid: 19641492
18 Ohno H, Shinoda K, Spiegelman BM, Kajimura S. PPARg agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 2012; 15(3): 395–404
https://doi.org/10.1016/j.cmet.2012.01.019 pmid: 22405074
19 Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerbäck S, Schrauwen P, Spiegelman BM. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012; 150(2): 366–376
https://doi.org/10.1016/j.cell.2012.05.016 pmid: 22796012
20 Lee YH, Petkova AP, Mottillo EP, Granneman JG. In vivo identification of bipotential adipocyte progenitors recruited by b3-adrenoceptor activation and high-fat feeding. Cell Metab 2012; 15(4): 480–491
https://doi.org/10.1016/j.cmet.2012.03.009 pmid: 22482730
21 Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homøe P, Loft A, de Jong J, Mathur N, Cannon B, Nedergaard J, Pedersen BK, Møller K, Scheele C. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab 2013; 17(5): 798–805
https://doi.org/10.1016/j.cmet.2013.04.011 pmid: 23663743
22 Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM. Transcriptional control of brown fat determination by PRDM16. Cell Metab 2007; 6(1): 38–54
https://doi.org/10.1016/j.cmet.2007.06.001 pmid: 17618855
23 Dalgaard LT, Pedersen O. Uncoupling proteins: functional characteristics and role in the pathogenesis of obesity and Type II diabetes. Diabetologia 2001; 44(8): 946–965
https://doi.org/10.1007/s001250100596 pmid: 11484071
24 Ricquier D. Respiration uncoupling and metabolism in the control of energy expenditure. Proc Nutr Soc 2005; 64(1): 47–52
https://doi.org/10.1079/PNS2004408 pmid: 15877922
25 Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997; 387(6628): 90–94
https://doi.org/10.1038/387090a0 pmid: 9139827
26 Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 2009; 9(2): 203–209
https://doi.org/10.1016/j.cmet.2008.12.014 pmid: 19187776
27 Orava J, Nuutila P, Noponen T, Parkkola R, Viljanen T, Enerbäck S, Rissanen A, Pietiläinen KH, Virtanen KA. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity (Silver Spring) 2013; 21(11): 2279–2287
https://doi.org/10.1002/oby.20456 pmid: 23554353
28 Jacene HA, Cohade CC, Zhang Z, Wahl RL. The relationship between patients’ serum glucose levels and metabolically active brown adipose tissue detected by PET/CT. Mol Imaging Biol 2011; 13(6): 1278–1283
https://doi.org/10.1007/s11307-010-0379-9 pmid: 21140233
29 Lee P, Greenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2010; 299(4): E601–E606
https://doi.org/10.1152/ajpendo.00298.2010 pmid: 20606075
30 Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF, Tseng YH, Goodyear LJ. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 2013; 123(1): 215–223
https://doi.org/10.1172/JCI62308 pmid: 23221344
31 Liu X, Zheng Z, Zhu X, Meng M, Li L, Shen Y, Chi Q, Wang D, Zhang Z, Li C, Li Y, Xue Y, Speakman JR, Jin W. Brown adipose tissue transplantation improves whole-body energy metabolism. Cell Res 2013; 23(6): 851–854
https://doi.org/10.1038/cr.2013.64 pmid: 23649313
32 Zhu Z, Spicer EG, Gavini CK, Goudjo-Ako AJ, Novak CM, Shi H. Enhanced sympathetic activity in mice with brown adipose tissue transplantation (transBATation). Physiol Behav 2014; 125: 21–29
https://doi.org/10.1016/j.physbeh.2013.11.008 pmid: 24291381
33 Liu X, Wang S, You Y, Meng M, Zheng Z, Dong M, Lin J, Zhao Q, Zhang C, Yuan X, Hu T, Liu L, Huang Y, Zhang L, Wang D, Zhan J, Jong Lee H, Speakman JR, Jin W. Brown adipose tissue transplantation reverses obesity in Ob/Ob mice. Endocrinology 2015; 156(7): 2461–2469
https://doi.org/10.1210/en.2014-1598 pmid: 25830704
34 Kim EH, Heo CY. Current applications of adipose-derived stem cells and their future perspectives. World J Stem Cells 2014; 6(1): 65–68
https://doi.org/10.4252/wjsc.v6.i1.65 pmid: 24567789
35 Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med 2013; 19(10): 1252–1263
https://doi.org/10.1038/nm.3361 pmid: 24100998
36 Vallerand AL, Lupien J, Bukowiecki LJ. Cold exposure reverses the diabetogenic effects of high-fat feeding. Diabetes 1986; 35(3): 329–334
https://doi.org/10.2337/diab.35.3.329 pmid: 3005094
37 Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, Iwanaga T, Saito M. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest 2013; 123(8): 3404–3408
https://doi.org/10.1172/JCI67803 pmid: 23867622
38 Murano I, Barbatelli G, Giordano A, Cinti S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat 2009; 214(1): 171–178
https://doi.org/10.1111/j.1469-7580.2008.01001.x pmid: 19018882
39 Collins S. b-Adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front Endocrinol (Lausanne) 2012; 2: 102
pmid: 22654837
40 Giordano A, Frontini A, Murano I, Tonello C, Marino MA, Carruba MO, Nisoli E, Cinti S. Regional-dependent increase of sympathetic innervation in rat white adipose tissue during prolonged fasting. J Histochem Cytochem 2005; 53(6): 679–687
https://doi.org/10.1369/jhc.4A6566.2005 pmid: 15928317
41 Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 2010; 298(6): E1244–E1253
https://doi.org/10.1152/ajpendo.00600.2009 pmid: 20354155
42 Liu X, Pérusse F, Bukowiecki LJ. Mechanisms of the antidiabetic effects of the β 3-adrenergic agonist CL-316243 in obese Zucker-ZDF rats. Am J Physiol 1998; 274(5 Pt 2): R1212–R1219
pmid: 9644032
43 de Souza CJ, Hirshman MF, Horton ES. CL-316,243, a β3-specific adrenoceptor agonist, enhances insulin-stimulated glucose disposal in nonobese rats. Diabetes 1997; 46(8): 1257–1263
https://doi.org/10.2337/diab.46.8.1257 pmid: 9231648
44 Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, Locksley RM, Palmiter RD, Chawla A. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 2014; 157(6): 1292–1308
https://doi.org/10.1016/j.cell.2014.03.066 pmid: 24906148
45 Lee SD, Tontonoz P. Eosinophils in fat: pink is the new brown. Cell 2014; 157(6): 1249–1250
https://doi.org/10.1016/j.cell.2014.05.025 pmid: 24906141
46 Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, Thome JJ, Farber DL, Lutfy K, Seale P, Artis D. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 2015; 519(7542): 242–246
https://doi.org/10.1038/nature14115 pmid: 25533952
47 Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, Chen JL, Jung DY, Zhang Z, Ko HJ, Kim JK, Véniant MM. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 2009; 58(1): 250–259
https://doi.org/10.2337/db08-0392 pmid: 18840786
48 Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008; 149(12): 6018–6027
https://doi.org/10.1210/en.2008-0816 pmid: 18687777
49 Qian SW, Tang Y, Li X, Liu Y, Zhang YY, Huang HY, Xue RD, Yu HY, Guo L, Gao HD, Liu Y, Sun X, Li YM, Jia WP, Tang QQ. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc Natl Acad Sci USA 2013; 110(9): E798–E807
https://doi.org/10.1073/pnas.1215236110 pmid: 23388637
50 Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 2008; 454(7207): 1000–1004
https://doi.org/10.1038/nature07221 pmid: 18719589
51 Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vázquez MJ, Morgan D, Csikasz RI, Gallego R, Rodriguez-Cuenca S, Dale M, Virtue S, Villarroya F, Cannon B, Rahmouni K, López M, Vidal-Puig A. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 2012; 149(4): 871–885
https://doi.org/10.1016/j.cell.2012.02.066 pmid: 22579288
52 Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessì-Fulgheri P, Zhang C, Takahashi N, Sarzani R, Collins S. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 2012; 122(3): 1022–1036
https://doi.org/10.1172/JCI59701 pmid: 22307324
53 Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HK, Moller DE. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 2013; 18(3): 333–340
https://doi.org/10.1016/j.cmet.2013.08.005 pmid: 24011069
54 Kawabata F, Inoue N, Yazawa S, Kawada T, Inoue K, Fushiki T. Effects of CH-19 sweet, a non-pungent cultivar of red pepper, in decreasing the body weight and suppressing body fat accumulation by sympathetic nerve activation in humans. Biosci Biotechnol Biochem 2006; 70(12): 2824–2835
https://doi.org/10.1271/bbb.60206 pmid: 17151481
55 Kawada T, Watanabe T, Takaishi T, Tanaka T, Iwai K. Capsaicin-induced beta-adrenergic action on energy metabolism in rats: influence of capsaicin on oxygen consumption, the respiratory quotient, and substrate utilization. Proc Soc Exp Biol Med 1986; 183(2): 250–256
https://doi.org/10.3181/00379727-183-42414 pmid: 2876434
56 Kawada T, Hagihara K, Iwai K. Effects of capsaicin on lipid metabolism in rats fed a high fat diet. J Nutr 1986; 116(7): 1272–1278
pmid: 2875141
57 Ohnuki K, Haramizu S, Oki K, Watanabe T, Yazawa S, Fushiki T. Administration of capsiate, a non-pungent capsaicin analog, promotes energy metabolism and suppresses body fat accumulation in mice. Biosci Biotechnol Biochem 2001; 65(12): 2735–2740
https://doi.org/10.1271/bbb.65.2735 pmid: 11826971
58 Masuda Y, Haramizu S, Oki K, Ohnuki K, Watanabe T, Yazawa S, Kawada T, Hashizume S, Fushiki T. Upregulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog. J Appl Physiol (1985) 2003;95(6): 2408–2415
59 Dong M, Yang X, Lim S, Cao Z, Honek J, Lu H, Zhang C, Seki T, Hosaka K, Wahlberg E, Yang J, Zhang L, Länne T, Sun B, Li X, Liu Y, Zhang Y, Cao Y. Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metab 2013; 18(1): 118–129
https://doi.org/10.1016/j.cmet.2013.06.003 pmid: 23823482
60 Berbée JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, Kooijman S, Hoeke G, Mol IM, John C, Jung C, Vazirpanah N, Brouwers LP, Gordts PL, Esko JD, Hiemstra PS, Havekes LM, Scheja L, Heeren J, Rensen PC. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun 2015; 6: 6356
https://doi.org/10.1038/ncomms7356 pmid: 25754609
61 Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmüller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J. Brown adipose tissue activity controls triglyceride clearance. Nat Med 2011; 17(2): 200–205
https://doi.org/10.1038/nm.2297 pmid: 21258337
62 Carey AL, Kingwell BA. Brown adipose tissue in humans: therapeutic potential to combat obesity. Pharmacol Ther 2013; 140(1): 26–33
https://doi.org/10.1016/j.pharmthera.2013.05.009 pmid: 23718981
63 Gunawardana SC, Piston DW. Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes 2012; 61(3): 674–682
https://doi.org/10.2337/db11-0510 pmid: 22315305
64 Gunawardana SC, Piston DW. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant. Am J Physiol Endocrinol Metab 2015; 308(12): E1043–E1055
https://doi.org/10.1152/ajpendo.00570.2014 pmid: 25898954
65 Min SY, Kady J, Nam M, Rojas-Rodriguez R, Berkenwald A, Kim JH, Noh HL, Kim JK, Cooper MP, Fitzgibbons T, Brehm MA, Corvera S. Human ‘brite/beige’ adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 2016; 22(3): 312–318
https://doi.org/10.1038/nm.4031 pmid: 26808348
66 Nishio M, Yoneshiro T, Nakahara M, Suzuki S, Saeki K, Hasegawa M, Kawai Y, Akutsu H, Umezawa A, Yasuda K, Tobe K, Yuo A, Kubota K, Saito M, Saeki K. Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer. Cell Metab 2012; 16(3): 394–406
https://doi.org/10.1016/j.cmet.2012.08.001 pmid: 22958922
67 Nishio M, Saeki K. Differentiation of human pluripotent stem cells into highly functional classical brown adipocytes. Methods Enzymol 2014; 537: 177–197
https://doi.org/10.1016/B978-0-12-411619-1.00010-0 pmid: 24480347
68 Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, Scheinin M, Taittonen M, Niemi T, Enerbäck S, Virtanen KA. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 2011; 14(2): 272–279
https://doi.org/10.1016/j.cmet.2011.06.012 pmid: 21803297
69 Chondronikola M, Volpi E, Børsheim E, Porter C, Annamalai P, Enerbäck S, Lidell ME, Saraf MK, Labbe SM, Hurren NM, Yfanti C, Chao T, Andersen CR, Cesani F, Hawkins H, Sidossis LS. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 2014; 63(12): 4089–4099
https://doi.org/10.2337/db14-0746 pmid: 25056438
70 Peirce V, Vidal-Puig A. Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes Endocrinol 2013; 1(4): 353–360
https://doi.org/10.1016/S2213-8587(13)70055-X pmid: 24622420
71 Villarroya J, Cereijo R, Villarroya F. An endocrine role for brown adipose tissue? Am J Physiol Endocrinol Metab 2013; 305(5): E567–E572
https://doi.org/10.1152/ajpendo.00250.2013 pmid: 23839524
72 Wang GX, Zhao XY, Lin JD. The brown fat secretome: metabolic functions beyond thermogenesis. Trends Endocrinol Metab 2015; 26(5): 231–237
https://doi.org/10.1016/j.tem.2015.03.002 pmid: 25843910
73 Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, Villarroya F. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 2011; 286(15): 12983–12990
https://doi.org/10.1074/jbc.M110.215889 pmid: 21317437
74 Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115(6): 1627–1635
https://doi.org/10.1172/JCI23606 pmid: 15902306
75 Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab 2007; 5(6): 415–425
https://doi.org/10.1016/j.cmet.2007.05.003 pmid: 17550777
76 Li G, Klein RL, Matheny M, King MA, Meyer EM, Scarpace PJ. Induction of uncoupling protein 1 by central interleukin-6 gene delivery is dependent on sympathetic innervation of brown adipose tissue and underlies one mechanism of body weight reduction in rats. Neuroscience 2002; 115(3): 879–889
https://doi.org/10.1016/S0306-4522(02)00447-5 pmid: 12435426
77 Wallenius V, Wallenius K, Ahrén B, Rudling M, Carlsten H, Dickson SL, Ohlsson C, Jansson JO. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 2002; 8(1): 75–79
https://doi.org/10.1038/nm0102-75 pmid: 11786910
78 Virtue S, Feldmann H, Christian M, Tan CY, Masoodi M, Dale M, Lelliott C, Burling K, Campbell M, Eguchi N, Voshol P, Sethi JK, Parker M, Urade Y, Griffin JL, Cannon B, Vidal-Puig A. A new role for lipocalin prostaglandin d synthase in the regulation of brown adipose tissue substrate utilization. Diabetes 2012; 61(12): 3139–3147
https://doi.org/10.2337/db12-0015 pmid: 22923471
79 Wang GX, Zhao XY, Meng ZX, Kern M, Dietrich A, Chen Z, Cozacov Z, Zhou D, Okunade AL, Su X, Li S, Blüher M, Lin JD. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med 2014; 20(12): 1436–1443
https://doi.org/10.1038/nm.3713 pmid: 25401691
80 Elias I, Franckhauser S, Ferré T, Vilà L, Tafuro S, Muñoz S, Roca C, Ramos D, Pujol A, Riu E, Ruberte J, Bosch F. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes 2012; 61(7): 1801–1813
https://doi.org/10.2337/db11-0832 pmid: 22522611
81 Sun K, Kusminski CM, Luby-Phelps K, Spurgin SB, An YA, Wang QA, Holland WL, Scherer PE. Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Mol Metab 2014; 3(4): 474–483
https://doi.org/10.1016/j.molmet.2014.03.010 pmid: 24944907
82 Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren LA, Samen E, Lu L, Vanwildemeersch M, Klar J, Genove G, Pietras K, Stone-Elander S, Claesson-Welsh L, Ylä-Herttuala S, Lindahl P, Eriksson U. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 2010; 464(7290): 917–921
https://doi.org/10.1038/nature08945 pmid: 20228789
83 Robciuc MR, Kivelä R, Williams IM, de Boer JF, van Dijk TH, Elamaa H, Tigistu-Sahle F, Molotkov D, Leppänen VM, Käkelä R, Eklund L, Wasserman DH, Groen AK, Alitalo K. VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metab 2016; 23(4): 712–724
https://doi.org/10.1016/j.cmet.2016.03.004 pmid: 27076080
84 Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V, Kajimura S. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 2012; 7(11): e49452
https://doi.org/10.1371/journal.pone.0049452 pmid: 23166672
85 Rogers NH. Brown adipose tissue during puberty and with aging. Ann Med 2015; 47(2): 142–149
https://doi.org/10.3109/07853890.2014.914807 pmid: 24888388
86 Heaton JM. The distribution of brown adipose tissue in the human. J Anat 1972; 112(Pt 1): 35–39
pmid: 5086212
87 Brooke OG, Harris M, Salvosa CB. The response of malnourished babies to cold. J Physiol 1973; 233(1): 75–91
https://doi.org/10.1113/jphysiol.1973.sp010298 pmid: 4759123
88 Graja A, Schulz TJ. Mechanisms of aging-related impairment of brown adipocyte development and function. Gerontology 2015; 61(3): 211–217
https://doi.org/10.1159/000366557 pmid: 25531079
89 Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. Annu Rev Pathol 2010; 5(1): 297–348
https://doi.org/10.1146/annurev.pathol.4.110807.092314 pmid: 20078222
90 Kindred JH, Tuulari JJ, Simon S, Luckasen GJ, Bell C, Rudroff T. Brown adipose and central nervous system glucose uptake is lower during cold exposure in older compared to young men: a preliminary PET study. Aging Clin Exp Res 2016; 28(3): 557–560
https://doi.org/10.1007/s40520-015-0521-2 pmid: 26754046
91 Zhang Y, Xie Y, Berglund ED, Coate KC, He TT, Katafuchi T, Xiao G, Potthoff MJ, Wei W, Wan Y, Yu RT, Evans RM, Kliewer SA, Mangelsdorf DJ. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 2012; 1: e00065
https://doi.org/10.7554/eLife.00065 pmid: 23066506
92 Chau MD, Gao J, Yang Q, Wu Z, Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1α pathway. Proc Natl Acad Sci USA 2010; 107(28): 12553–12558
https://doi.org/10.1073/pnas.1006962107 pmid: 20616029
93 Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol 2015; 226(1): R17–R28
pmid: 26021555
94 Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ, Kammula US, Kebebew E, Pacak K, Chen KY, Celi FS. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 2014; 19(2): 302–309
https://doi.org/10.1016/j.cmet.2013.12.017 pmid: 24506871
95 Youm YH, Horvath TL, Mangelsdorf DJ, Kliewer SA, Dixit VD. Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution. Proc Natl Acad Sci USA 2016; 113(4): 1026–1031
https://doi.org/10.1073/pnas.1514511113 pmid: 26755598
96 Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, Davis M, Muscaritoli M, Ottery F, Radbruch L, Ravasco P, Walsh D, Wilcock A, Kaasa S, Baracos VE. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 2011; 12(5): 489–495
https://doi.org/10.1016/S1470-2045(10)70218-7 pmid: 21296615
97 Cao DX, Wu GH, Zhang B, Quan YJ, Wei J, Jin H, Jiang Y, Yang ZA. Resting energy expenditure and body composition in patients with newly detected cancer. Clin Nutr 2010; 29(1): 72–77
https://doi.org/10.1016/j.clnu.2009.07.001 pmid: 19647909
98 Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev 2009; 89(2): 381–410
https://doi.org/10.1152/physrev.00016.2008 pmid: 19342610
99 Brooks SL, Neville AM, Rothwell NJ, Stock MJ, Wilson S. Sympathetic activation of brown-adipose-tissue thermogenesis in cachexia. Biosci Rep 1981; 1(6): 509–517
https://doi.org/10.1007/BF01121584 pmid: 7295902
100 Tsoli M, Moore M, Burg D, Painter A, Taylor R, Lockie SH, Turner N, Warren A, Cooney G, Oldfield B, Clarke S, Robertson G. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res 2012; 72(17): 4372–4382
https://doi.org/10.1158/0008-5472.CAN-11-3536 pmid: 22719069
101 Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, Phelps ME, Weber WA. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 2006; 47(6): 999–1006
pmid: 16741310
102 Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, Spiegelman BM. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 2014; 513(7516): 100–104
https://doi.org/10.1038/nature13528 pmid: 25043053
103 Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G, Zechner R, Wagner EF. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 2014; 20(3): 433–447
https://doi.org/10.1016/j.cmet.2014.06.011 pmid: 25043816
104 Knudsen JG, Murholm M, Carey AL, Biensø RS, Basse AL, Allen TL, Hidalgo J, Kingwell BA, Febbraio MA, Hansen JB, Pilegaard H. Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS One 2014; 9(1): e84910
https://doi.org/10.1371/journal.pone.0084910 pmid: 24416310
105 Shellock FG, Riedinger MS, Fishbein MC. Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol 1986; 111(1): 82–85
https://doi.org/10.1007/BF00402783 pmid: 3949854
106 Vosselman MJ, Hoeks J, Brans B, Pallubinsky H, Nascimento EB, van der Lans AA, Broeders EP, Mottaghy FM, Schrauwen P, van Marken Lichtenbelt WD. Low brown adipose tissue activity in endurance-trained compared with lean sedentary men. Int J Obes 2015; 39(12): 1696–1702
https://doi.org/10.1038/ijo.2015.130 pmid: 26189600
107 Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F. Hepatic FGF21 expression is induced at birth via PPARα in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab 2010; 11(3): 206–212
https://doi.org/10.1016/j.cmet.2010.02.001 pmid: 20197053
108 Douris N, Stevanovic DM, Fisher FM, Cisu TI, Chee MJ, Nguyen NL, Zarebidaki E, Adams AC, Kharitonenkov A, Flier JS, Bartness TJ, Maratos-Flier E. Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology 2015; 156(7): 2470–2481
https://doi.org/10.1210/en.2014-2001 pmid: 25924103
109 Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM. FGF21 regulates PGC-1a and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 2012; 26(3): 271–281
https://doi.org/10.1101/gad.177857.111 pmid: 22302939
110 Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, Jedrychowski MP, Ruas JL, Wrann CD, Lo JC, Camera DM, Lachey J, Gygi S, Seehra J, Hawley JA, Spiegelman BM. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 2014; 157(6): 1279–1291
https://doi.org/10.1016/j.cell.2014.03.065 pmid: 24906147
111 Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC, Yun K, Locksley RM, Chawla A. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 2015; 160(1-2): 74–87
https://doi.org/10.1016/j.cell.2014.12.011 pmid: 25543153
112 Hui X, Gu P, Zhang J, Nie T, Pan Y, Wu D, Feng T, Zhong C, Wang Y, Lam KS, Xu A. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab 2015; 22(2): 279–290
https://doi.org/10.1016/j.cmet.2015.06.004 pmid: 26166748
113 Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, Cypess AM, Mishina Y, Gussoni E, Tseng YH. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 2013; 495(7441): 379–383
https://doi.org/10.1038/nature11943 pmid: 23485971
114 Elsen M, Raschke S, Tennagels N, Schwahn U, Jelenik T, Roden M, Romacho T, Eckel J. BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells. Am J Physiol Cell Physiol 2014; 306(5): C431–C440
https://doi.org/10.1152/ajpcell.00290.2013 pmid: 24284793
[1] Xueling Suo, Du Lei, Wenbin Li, Lei Li, Jing Dai, Song Wang, Nannan Li, Lan Cheng, Rong Peng, Graham J Kemp, Qiyong Gong. Altered white matter microarchitecture in Parkinson’s disease: a voxel-based meta-analysis of diffusion tensor imaging studies[J]. Front. Med., 2021, 15(1): 125-138.
[2] Baiwan Zhou, Dongmei An, Fenglai Xiao, Running Niu, Wenbin Li, Wei Li, Xin Tong, Graham J Kemp, Dong Zhou, Qiyong Gong, Du Lei. Machine learning for detecting mesial temporal lobe epilepsy by structural and functional neuroimaging[J]. Front. Med., 2020, 14(5): 630-641.
[3] Ke Sheng. Artificial intelligence in radiotherapy: a technological review[J]. Front. Med., 2020, 14(4): 431-449.
[4] Shuwen Qian,Haiyan Huang,Qiqun Tang. Brown and beige fat: the metabolic function, induction, and therapeutic potential[J]. Front. Med., 2015, 9(2): 162-172.
[5] Yuzhen Wang,Rui Xu,Gaoxing Luo,Jun Wu. Three-dimensional reconstruction of light microscopy image sections: present and future[J]. Front. Med., 2015, 9(1): 30-45.
[6] Xiaoyan Chen,Wenxia Xiao,Xinchun Li,Jianxun He,Xiaochun Huang,Yuyu Tan. In vivo evaluation of renal function using diffusion weighted imaging and diffusion tensor imaging in type 2 diabetics with normoalbuminuria versus microalbuminuria[J]. Front. Med., 2014, 8(4): 471-476.
[7] Liangqian Tong, Ming Zhao, Shu Zhu, Jing Chen. Synthesis and application of superparamagnetic iron oxide nanoparticles in targeted therapy and imaging of cancer[J]. Front Med, 2011, 5(4): 379-387.
[8] Panpan Zhang, Feng Liu. In vivo imaging of hematopoietic stem cell development in the zebrafish[J]. Front Med, 2011, 5(3): 239-247.
[9] Lian ZHANG, Zhi-Biao WANG. High-intensity focused ultrasound tumor ablation: Review of ten years of clinical experience[J]. Front Med Chin, 2010, 4(3): 294-302.
[10] Ling-Yan XU PhD, Xin-Ran MA PhD, Xiao-Ying LI PhD, MD, Shu WANG PhD, Guang NING PhD, MD, Jie-Li LI PhD, Jian-Ming XU PhD, . Ablation of steroid receptor coactivator-3 in mice impairs adipogenesis and enhances energy expenditure[J]. Front. Med., 2010, 4(2): 229-234.
[11] Wei HAN MM, Ming-Xing XIE MD, Qing LV MD, Xin-Fang WANG MD, Li ZHANG MM, . Assessment of global and regional left ventricular twist and displacement in anterior myocardial infarction using 2-dimensional strain imaging[J]. Front. Med., 2010, 4(1): 71-76.
[12] PEI Guoxian, ZHANG Yuanzhi, LI Jianwei, JIN Dan, CHEN Jionghao, LI Yanbing, ZHONG Shizhen. Application of three-dimensional digitalized reconstruction of latissimus dorsi myocutaneous flap[J]. Front. Med., 2008, 2(1): 45-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed